

®

Reference Manual

IBM 7090 Data Processing System

Minor Revision (March 1962)

This edition, A22-6528-4, is a minor revision of the preceding
edition but does not obsolete Form A22-6528-3. The principal

changes are the addition of Hypertape Drive information and
added 7909 Data Channel information. Newsletters N22-0014 and
N22-0019 are obsoleted by this edition.

©1959, 1960, 1961, 1962 by International Business Machines Corporation

Preface

This manual presents the operation and use of the

ibm 7090 Data Processing System. Its purpose is two-

fold: (1) to provide a reference and guide for those

familiar with the system; and (2) to serve as an in-

structional aid in the training of operators and pro-

grammers. The manual assumes that the reader is

familiar with the ibm 709-7090 General Information

Manual, Form D22-6508.

The manual is divided into sections, each including

related machine or functional operations. For ex-

ample, information about any input-output device

used with the systems is located in the "Input-Output

Components" section. The sections are independent

and need not be used in the order in which they ap-

pear.

For each instruction, the manual gives: (1) per-

tinent facts about the instruction, in brief, (2) a de-

tailed description with illustrations and examples,

where needed, and (3) the indicators involved and
execution time for each system. Sample programs are

usually shown in share coding rather than in machine
language.

The first section of the manual is devoted to gen-

eral information concerning the systems. This in-

formation is mainly designed as a review, so that the

reader may understand the terms as the manual uses

them.

A short introduction at the beginning of each sec-

tion reviews general principles and explains the or-

ganization of the section.

Operation of the central processing unit console con-

trol, data channel console, and all input-output unit

keys and lights together with wiring examples is de-

scribed in the ibm Operator's Guide for 7090 Data
Processing System, Form A22-6535. Also included in

the operator's guide are information paths within the

system and operational procedures.

Contents

System Description 7

Data Channel Operation 12

Data Channel Trap 15

Programming Techniques 16

External Signal 17

Computer Instructions, Commands, and Orders 18

Fixed Point Operation 20

Floating Point Operations 25

Shifting Operations 31

Word Transmission Operations 33

Control Operations 35

Index Transmission Operations 44

Logical Operations 47

Sense Indicator Operations 50

Convert Instructions 55

Input-Output Operations 57

Input-Output Transmission Operations 60

Data Channel Commands 61

Channel Trap Operations 65

System Compatibility Operations 65

Commands and Instructions for the ibm 7909 Data

Channel 67

ibm 7909 Data Channel Commands 68

ibm 7909 Data Channel Command Bit Configurations 75

ibm 7631 File Control Order Bit Configurations 75

ibm 7640 Hypertape Control Order Bit Configurations 75

Systems Program Compatibility 75

Interrupt 77

Interrupt Conditions 77

Input-Output Components 80

Magnetic Tape Units 80

Disk Storage 80

ibm 7340 Hypertape Drive 83

ibm 1414 Model 6 Input-Output Synchronizer 85

Telegraph Input-Output 87

ibm 7607 Data Channels 89

Card Reader 96

Card Punch 99

Printer 102

Programming Examples 1°8

Definition of an Assembly Program 109

Assembly HO
Logical Check Sums HO
Packing and Unpacking 112

Subroutines 1 14

Convert Instructions 115

Sense Indicators 120

Floating Point Overflow and Underflow 122

Writing a Format Track 126

Write, Write Check, and Read on Disk Storage 128

Append ix 1

3

*

A. Number Systems and Conversion 131

B. Octal-Decimal Integer Conversion Table 136

C. Octal-Decimal Fraction Conversion Table 140

D. Powers of Two 143

E. scat Mnemonic Operation Codes 144

F. Listing of Instructions 147

G. Instructions by Operation Group 152

Index 1^4

IllllllflJk

ibm 7090 Data Processing System

IBM 7090 Data Processing System

Rapidly expanding scientific investigations involve

many complex calculations. The vast amount of data

constantly being used in aircraft industries, govern-

ment agencies, and business establishments of all kinds

demands machines that will compute, select, and cor-

relate data at electronic speeds. The ibm 7090 Data

Processing System can solve problems that cannot be

solved in a lifetime of manual labor.

Core Storage

The computer uses, as its high-speed storage unit, an

information holding device composed of magnetic

cores. This core storage is subdivided into units called

words, each word being identified by a number as-

signed to it. This identifying number is called an

address.

The ibm 7302 Core Storage has a capacity of 32,768

words (Figure 1). Each word is comprised of 36 data-

bits. When data are taken from or entered into a

word location, reference must be made to this address.

The 36 bits of a word are used in two ways: as an

instruction to the computer "ordering" a particular

operation, or as the operand of an operation (data)

.

Stored Program

The computer does its work by executing many in-

structions at high speed. The set of instructions used

in solving a problem form a program for the com-

puter. Because the computer holds its instructions

internally it is called a stored program system.

Normally, instructions are taken from sequentially

ascending locations. However, the execution of in-

structions does not have to occur in this manner. It is

possible, by using control or transfer instructions, to

alter the sequential execution process and to indicate

some other location as the next instruction to be exe-

cuted. In this way, it is possible to repeat any instruc-

tion or block of instructions as often as desired.

The logical path followed by the program may be

determined by a series of tests applied at points in the

execution process, thus providing a stored program

with the ability to control its own course of execu-

tion.

Fixed-Point Numbers

When a word contains a fixed-point number, the first

of the 36 positions holds the algebraic sign of the

number. A "0" signifies a positive number and a "1"

signifies a negative number. The remaining 35 posi-

tions contain the magnitude of the number. Figure 2

shows locations in storage containing plus one and

minus three. When fixed-point operations are used,

the programmer must decide where the point is to be

located. On the computer, the point which separates

the integral part from the fraction part is termed a

binary point.

I 000000000000000000000000000000000001

•3 10000000000000000000000000000000001 1

Figure 1. IBM 7302 Core Storage Unit

Figure 2. Words Containing +1 and —3

Floating-Point Numbers

When the range of numbers anticipated during a cal-

culation is either large or unpredictable, it becomes

difficult to work with fixed-point instructions. An al-

ternative set of floating-point instructions is available

for such calculations. These instructions maintain the

binary point automatically.

System Description

A floating-point decimal number X may be ex-

pressed as a signed proper fraction (N) multiplied by
some integral power (n) of 10. The number is normal
if the power of 10 (n) is chosen so that the decimal
point is positioned to the left of the most significant

digit of N. Examples:

X N 10n

—.010 = _.io x 10- 1

.140 = .14 x 10°

4.600 = .46 x 10 1

88.000 = .88 x 10 2

Likewise, a floating-point binary number (X) may
be represented as a signed proper fraction (B) times

some integral power (b) of 2. In the normalized case

the binary point is positioned to the left of the most
significant digit of B. Examples:

X (binary) B (binary) 2 3(decimal)

—.001 = —.100 X 2-2

.100 = .100 X 2°

1.100 = .110 X 2 1

110.000 = .110 X 2 3

In the computer a floating-point number is stored

in a word as shown in Figure 3. The fraction is con-

tained in bit positions 9 through 35. A floating-point

Characteristic Fraction

Figure 3. Floating-Point Word Format

number with a 1-bit in position 9 is said to be nor-

mal. The sign of the fraction is contained in the S

position of the word. The characteristic is formed by
adding +128 to the exponent. For example, an ex-

ponent of —32 would be represented by a character-

istic of 128 - 32 or 96. An exponent of + 100 would
be represented by a characteristic of 100 -f- 128 or

228. Since 128lo = 2008 , the characteristic of a non-
negative exponent always has a 1-bit in position 1,

while the characteristic of a negative exponent always
produces a 0-bit in position 1. A normal zero has no
bits in both the characteristic and the fraction.

Instructions

Most computer instructions have an address part
which is used to denote the location in core storage

which is to be subjected to some arithmetic or logical

operation. This address part or field always occupies
bit positions 21 through 35 (Figure 4). The 15-bit

address field is just large enough to hold the number
32,767, the highest core storage address. This number,
expressed in binary, is simply 15 consecutive ones. On
a computer having less than 32,768 positions of core

storage, the higher positions of the address field are

ignored by the computer.

Address part

20 21 35

Figure 4. Address Part of the Instruction

The operation part of an instruction, in general, is

not fixed in length but may vary from one instruction

to another. Figure 5 shows the bit pattern for the

add instruction specifying core location 0001.

000100000000 000000000 000000000000001ID
35S,l 11 12 20 21

Figure 5. Add Instruction

Central Processing Unit

The central processing unit (Figure 6) consists of the

ibm 7108 Instruction Processing Unit and the ibm
7109 Arithmetic Sequence Unit. All arithmetic and
control functions are accomplished by these units.

For ease of description, these units are called Central
Processing Unit or cpu. This section describes the

functions of major registers and counters within the

CPU.

The accumulator register (ac) has a capacity of 37
bits and a sign position (Figure 7). In addition to

the normal 36 positions, the ac has two extra posi-

tions, Q and P, which precede position 1. These two
positions are provided for accumulator overflow. When
the sum of 35-bit numbers is a 36-bit result, a carry

occurs out of the high-order position (position 1) and
is placed in the P position. Similarly, a carry from P is

HHlfllfii

Figure 6. Central Processing Unit

ibm 7090

m AC

QP 1 2 35

Figure 7. Accumulator Register

placed in Q. Carries from Q are lost. Whenever a

carry from position 1 to position P occurs, as a result

of a fixed-point arithmetic or shifting instruction, the

overflow indicator is turned on. The status of the

overflow indicator may be tested by two of the com-

puter's conditional control instructions.

The multiplier-quotient register (mq) has a capac-

ity of 36 bits. It has a special function in multiplica-

tion and division operations. With regard to multi-

plication and some shift operations, the mq may be

considered as the right-hand extension of the ac reg-

ister (Figure 8).

The storage register (sr) has a capacity of 36 bits

and serves as a buffer between core storage and the

cpu. It is used for both arithmetic and control func-

tions. For this reason the contents of the sr are

always destroyed before the execution of a new in-

struction. Therefore, it is not a normal object of

concern to the programmer except when manually

stepping through a program in order to locate pro-

gram errors.

The sense register (si) consists of 36 bits which may
be addressed by any of a special group of sense indi-

cator (si) instructions. These operations treat the bits

of the si register as switches which may be logically

manipulated and tested either singly or in groups.

Figure 9 is a schematic of this register.

The instruction counter (ic) , with a capacity of

15 bits (for 32,768 word core storage) determines the

location from which the next instruction is to be

taken. Normally the content of this register is the

location or address of the current instruction, plus

one. The highest location in core storage and loca-

tion zero are treated as consecutive locations. During
execution of test instructions the location counter

(instruction counter) may be increased by 1, 2, or 3,

resulting in a corresponding skip in the program.

Similarly, during the execution of transfer type in-

structions, the contents of the ic may be replaced by

the value specified by the transfer instruction.

The instruction register (ir) contains the opera-

tion part of the instruction-word. When the cpu is

AC

"t

01 2

Figure 9. Sense Indicator Register

35

ready to accept another instruction, the word in core

storage specified by the instruction counter is brought

into the storage register. The operation part of the

instruction is brought to the instruction register for

interpretation and execution, while the remaining

portion of the instruction is interpreted in the sr.

Three index registers (xr) are used in the com-
puter. These registers are called A, B, and C or 1, 2,

and 4. The latter terminology is conyenient for the

programmer because the numbers 1, 2, and 4 are the

octal representation of the "addresses" of the three

registers. These addresses are stipulated in a part of

an instruction designated as the tag field and are nor-

mally referred to as "tags." This tag field always

occupies bit positions 18, 19, and 20 of an instruction

(Figure 10).

Note: all numbers (addresses) in the text are con-

sidered to be expressed in the octal system, unless

otherwise stated.

operation tag-bits add ress

register specification

octal

1

2

4

alphabetic

A

B

C

1
10 1

[

|

1
10 1 ol

I

1 ll o 1

|

S,2 11 18 20 21 35

Figure 10. Index Register Tag Bits

Address Modification with Index Registers

One of the primary uses of index registers arises from

their ability to modify instruction addresses. For this

to occur, the instruction must specify the particular

register or registers that are to take part in the modify-

ing activity. This is done by the appropriate bit con-

figuration in the tag field. The instruction is then

executed as if its address field contained the stated

address minus the contents of the index register. For

example, assume that storage location 1000 contains

the instruction add 2117 and that this instruction has

a 2 in its tag field. If the contents of index register 2

are 117, the number stored in location 2000 (2117

minus 117) is added into the accumulator when the

MQ

Qp 1

Figure 8. Accumulator and MQ Registers

•35 1 2 •

•35

System Description

add instruction is executed. However, location 1000

still contains the instruction add 2117 in its original

form. Address 2000 is called the effective address, and
the process is called effective address modification; that

is, the address of the instruction is modified in the

cpu for execution purposes but is unaltered in storage.

All computer instructions, when tagged, are subject

to effective address modifications with the following

exceptions:

1. Instructions which load, store, modify, or test

the contents of an index register. These instruc-

tions use the tag field to specify the index reg-

ister which is to be affected.

2. Convert instructions.

3. Those sense indicator instructions which com-

bine the address and tag fields and use the entire

right half of the instruction as a mask.

Note: The convert and sense indicator instructions

referred to in items 2 and 3 above are defined in the

section "Computer Instructions."

Multiple Tag

An instruction may refer to more than one index reg-

ister by placing multiple l's in the tag field (Figure

11). Thus, a tag of three specifies index registers 1

and 2. Care must be exercised when multiple tags are

used. The use of multiple tags results in the "logical

or" of the contents of the specified index registers.

For example, if a tag of three is given, the 1 5 positions

of index register 1 are matched against the correspond-

ing positions of index register 2. If either bit in a

given position is a 1, the resulting logical sum will

have a 1 in that position. If both positions are 0, the

logical sum will have a in that position. For ex-

ample, assume index registers 2 and 4 contain 03204

(000011010000100) and 03061 (000011000110001),
respectively. The instruction add 6521 with an index
tag of 6 causes the number 03265 (000011010110101)
to be subtracted from the address of the instruction

and the effective address is therefore 03234.

TagF eld

Index Registers SpecifiedBinary Octal

000 None
001 1 A 1

010 2 6 2

011 3 A&B 1 &2
100 4 C 4

101 5 A&C 1 &4
110 6 B&C 2 &4
111 7 A& B&C 1 &2 &4

Decrement Field

A group of instructions are used to test or alter the

contents of an index register. The number used to test

or alter an index register is contained in positions

3-17 of these instructions. These 15 bit positions are

referred to as the decrement field (Figure 12)

.

Decrement

S.l-2 3 17 18 20 21

Figure 12. Decrement Field in a Word

Complement Arithmetic

When index registers are used for effective address

modification, the contents of an index register are

always subtracted from an instruction's address. Since

neither the address of an instruction nor the contents

of an index register is associated with any algebraic

sign, it is not possible to accomplish effective address

modification by addition in any direct manner. How-

ever, this may be accomplished by using complement

arithmetic. The following definitions apply to this

type of arithmetic:

1. The l's complement of a number is defined as

that number which results by replacing each 1 in a

number with a and each with a 1. For example,

given the binary number 101, the l's complement

would be 010. Also, the sum of a binary number and

its l's complement is a binary number composed of

all ones (101 + 010 = 111).

2. The 2's complement of a binary number is de-

fined as the l's complement of a number increased by

one. Thus, for the preceding example, the 2's com-

plement of the binary number 101 would be 011. If

the 2's complement of a number occupies an index

register and is used to modify an address, the effective

address is the sum of the index register contents and

the address portion of the instruction. If the true

number occupies the index register, the effective ad-

dress is the difference between the index register con-

tents and the address portion of the instruction.

Since both the contents of an index register and an

instruction address are 15-bit numbers, all resulting

carries to the sixteenth position will be lost.

Effective addresses are always formed in the com-

puter by the addition of the 2's complement of the

contents of the index register. This is an automatic

feature. For example, if index register 4 contains

the number 00005 and the instruction add 00015

with a tag of 4 is executed, the effective address is

00010:

Figure 11. Multiple Tags

2's complement of XR 4
add instruction address
Effective address (carry lost)

111 111 111 111 011

000 000 000 001 101

000 000 000 001 000

10 ibm 7090

If index register 4 had contained the 2's com-

plement of 00005, (that is, 77773) then the effective

address would be 00022:

2's complement of XR 4

add instruction address

Effective address

Indirect Addressing

000 000 000 000 101

000 000 000 001 101

000 000 000 010 010

The concept of effective address modification is ex-

tended for a large group of instructions for which

indirect addressing is provided. This extension is

carried out in a very simple way. Just as index reg-

isters are "addressed" with a tag, indirect addressing

is specified or "addressed" by a flag (1 bits in both

positions 12 and 13 of the instruction). With both

positions 12 and 13 of an instruction containing ones,

the instruction is executed in the following way. An
effective address is computed in the normal manner,

by subtracting the contents of the specified index

register, if one is specified, from the address part of

the instruction. This is known as an indirect effective

address. The calculator then examines the location

specified by this indirect effective address and uses the

tag and address parts of this word to compute a direct

effective address. The instruction is then executed as

if its address field had contained this direct effective

address with no flag or tag. The following examples

illustrate this process. Assume that the address part

of location 00054 in core storage contains 00273. II

the instruction add 00054 is executed, the contents of

location 00054 will be added into the ac. However,

if this same instruction had indirect addressing speci-

fied by 1 bits in both positions 12 and 13, the con-

tents of location 00273 would be added into the ac.

Now, assume further that index registers 1 and 2 con-

tain 4 and 3, respectively, and that core storage loca-

tion 00050 contains a 2 in its tag field and 00167 in

its address part. If the instruction add 00054, with

an index tag of 1 and indirect address flag specified,

is executed, then the indirect effective address equals

00050 (address field of the add instruction minus the

contents of xr 1) . The direct effective address is

00164 (address part of location 00050 minus the con-

tents of xr 2) and the contents of this location are

added into the ac.

Indicators and Sense Devices

Three indicators are also contained in the cpu. These

indicators are either on or off and can be tested by

means of a test instruction peculiar to that indicator.

The accumulator overflow indicator is turned on

whenever a 1 passes into or through position P from

position 1 of the ac as a result of the execution of a

fixed-point arithmetic or a shifting instruction. An

example is a carry resulting from an algebraic addi-

tion. Either of the instructions transfer on overflow
or transfer on no overflow can be used to test the

status of this indicator.

The divide-check indicator is turned on, in fixed-

point division, if the magnitude of the number in the

ac (dividend) is greater than or equal to the magni-

tude of the number in storage (divisor) . In floating-

point division a divide check occurs only when the

divisor is zero or if the magnitude of the fraction ol

the dividend is greater than or equal to twice the

magnitude of the fraction of the divisor. The divide-

check indicator is tested by the divide check test

instruction.

The input-output check indicator (i-o check) is

turned on by the attempted execution of an input-

output instruction (copy, locate drum address, reset

and load channel, or load channel) without selecting

an input-output unit. Other conditions affecting the

status of this indicator are discussed in the following

pages. The i-o check indicator is tested by the input-

output test instruction.

Transfer Trap Mode

The computer can be operated in a special transfer

trap mode. The major use of this mode is in program
testing. Operation in the trap mode permits the pro-

gram to run at normal speed with interruptions of

normal operation only at transfer points. At such

points the location of the last sequential instruction

is saved, and a transfer of control is made to a fixed

location. Beginning at this fixed location, a special

monitoring program may aid the programmer in con-

trol of his stored program even in the event of an

incorrect transfer.

When the computer is operating in this mode, the

location of each transfer instruction replaces the

address part of location prior to the instruction's

execution. Unconditional transfers and conditional

transfers for which the transfer conditions are met are

not executed. Instead, control is transferred to loca-

tion 1. One instruction, trap transfer, is immune
to the trapping mode. Its location is never stored in

location 0, and control is always transferred to the

location specified by the address of this instruction.

The instructions enter trapping mode and leave
trapping mode are used to enter or leave this special

mode. Depression of the clear or reset keys on the

console also causes the computer to exit from this

mode.

Sense Switches

Located on the console are six sense switches, each of

which may be turned on or off by the machine opera-

System Description 11

tor. The instruction swt (switch test) is used to test

the setting of any desired switch.

Sense Lights

Also located on the console are four sense lights. Any
one of these lights may be turned on or off by the

sln and slf instructions. Another instruction, slt

(sense light test) is used to test the status of any de-

sired sense light.

Panel In-Out Switches

A group of 36 switches corresponding to the 36 posi-

tions of a word are provided on the console. A switch

turned down corresponds to a 1, and one turned up
corresponds to a 0. The instruction enter keys causes

the number entered into these switches to replace the

contents of the mq register. A reset switch on the

7090 restores all input switches to the zero state.

Data Channel Operation

Data being transmitted between core storage and any
input-output device must pass through a data chan-

nel. The operation of a data channel is initiated

by the execution of two instructions in the central

processing unit. Once started, the channel operates

independently of the main program being executed

by the cpu. A data channel has the responsibility for

controlling the quantity and destination of all data

transmitted between core storage and the input-output

device. It also performs limited counting and testing

operations concerned with the transmission of data.

The ibm 7909 Data Channel is also able to instruct

and select an input-output device adapter, such as the

ibm 7631 File Control or the ibm 7640 Hypertape
Control.

Programs for a channel operation are stored in core

storage just as are instructions executed by the cpu. To
distinguish between cpu and data channel programs,

data executed in the cpu are termed instructions, data

executed by the data channel are termed commands,
and data executed by the adapter are termed orders.

Although a channel, once started, operates asyn-

chronously, the main program may exercise a large

degree of supervisory control through instructions

which test the status of a data channel. A single com-
mand may transmit a large block of words between
core storage and an input-output device so that nor-

mally many instructions in the main program may be
executed during the time taken to execute just one
command in a data channel.

All transmission is in 36-bit word parallel fashion.

Since the cpu and a data channel cannot take a storage

reference cycle at the same time, the execution of an

instruction in the main program may be delayed at

least one computer cycle. Once such a delay occurs,

all of the time needs of all data channels will be

satisfied before the main program execution is re-

sumed. Such delays are imposed automatically and
do not interfere with the internal registers or calcula-

tions in the cpu. If the instruction being executed is

not using core storage when a channel requires a

storage cycle, normally no delay is occasioned. When
several data channels require storage cycles at one
time, the sequence of transmission is handled auto-

matically.

A data channel controls all input-output units

attached to it in much the same way. Because of the

importance of magnetic tape, the relationship between
a data channel and tape is discussed here. A descrip-

tion of the operation of the card reader, card punch,
and printer, together with additional information on
magnetic tape, will be found in the section "Input-

Output Components."

Magnetic Tape and Data Channel (7607) Addresses

A maximum of ten tapes per channel may be used

with the 7090 system. Like locations in core storage,

each tape unit has an address. Each data channel also

has an address. The combination of the two addresses

will then specify a particular tape unit attached to a

particular data channel.

To start a tape unit for reading or writing, a select

instruction must be executed in the main program.

The instruction read select prepares the tape for a

reading operation and the instruction write select

prepares it for writing. The joint address of a tape

unit and data channel occupies the address part (posi-

tions 21-35) of the select instruction. If the address

field of this instruction is viewed as a five-digit octal

number, then the three low-order digits specify the

tape unit, and the fourth and fifth digits the data

channel (Figure 13).

Not

Used

Data

Channel
Tape Unit

Figure 13. Select Instruction Address Field

The specific numerical addressing system used by

the tapes is as follows:

1. Data channels A through H are identified by
the octal numbers 1 through 10 and occupy po-

sitions 23-26 of the instruction.

2. In the bcd mode, tape units 1-10 are identified

by the octal numbers 201-212, occupying posi-

tions 27-35 of the instruction.

12 ibm 7090

3. In the binary mode, the tape units are identified

by the octal numbers 221-232 which occupy posi-

tions 27-35 of the instruction.

Examples: If the instruction read select 1201 is

executed, tape unit 1 attached to data channel A will

be selected and started for a reading operation in the

bcd mode. If the instruction write select 3223 is

given, tape unit 3 attached to data channel C will be

selected and started for a write operation in the binary

mode.

Data Channel Registers (7607)

Once the select instruction has been executed, the

operation of the tape and transmission of data be-

tween core storage and tape are under control of the

data channel. There are four registers in the channel

which control its operation. These registers are

similar in function to the control registers in the cpu.

The first command of a data channel program must

be sent to the channel by a reset and load channel

instruction from the main program. The address part

of this instruction specifies the location in core storage

containing the data channel command. When this

instruction is executed, the contents of the location in

core storage (specified by the reset and load chan-

nel instruction) are sent to the data channel control

registers.

There is a separate reset and load channel instruc-

tion for each data channel. Where select instructions

specify the appropriate data channel through usage

of part of their address field, the address field of the

reset and load channel is fully occupied by the storage

address of the command. Thus, the distinction be-

tween data channels is made in the operation part of

the instruction.

Word Count Register. The contents of positions

3-17 of the data channel command are loaded into

this register (Figure 14) . This register specifies the

number of words to be transmitted between core

storage and the input-output unit. As each word is

entered or taken from core storage, the contents of

the word register are reduced by one.

Data Channel Command

mm Word Count 1 .xiU'l? • :•
•if'

;

:
•:1 iiS^!if

'

' *I:§• :
-i»

S.l-2 3 17

f

18 35

Word Register

Channel Address Register. The contents of positions

21-35 of the data channel command are loaded into

this register (Figure 15). The register specifies the

location in core storage from which the data are to

be taken during writing or to be entered into during

reading. The contents of this register are increased

by one after each word transmission to or from core

storage. Thus, the address register directs the trans-

mission of data into or from consecutive locations in

core storage.

Data Channel Command

i'i"i"i'Si$i'i"i"i

Word Count Address

S, 1-2 3 17 1819 21 35

Channel Address Register

Figure 14. Data Channel Word Count Register

Figure 15. Data Channel Address Register

Location Register. This register is similar to the

instruction counter in the cpu. The location register

contains the location of the current data channel

command, plus one. Thus, data channel commands

are taken normally from sequential locations in core

storage. Just as control or transfer instructions alter

the contents of the cpu's instruction counter, transfer

commands change the contents of the location reg-

ister in a data channel.

The size of these registers (word register, channel

address register, and location register) is set at 15-bit

length. Each register has a capacity large enough to

hold the address of the last location in core storage.

When a 15-bit command field is loaded into a channel

register, the leftmost bits which exceed the capacity of

the register are ignored. When the contents of a

channel register are stored in a 15-bit field in core

storage, the leftmost bits corresponding to the absent

bits of the register are set to zeros.

With reference to blocks of consecutively located

commands or data words, the highest location in core

storage and location zero are treated as consecutive

locations.

Operation Register. This register is similar to the

instruction register in the cpu. The contents of posi-

tions S, 1, 2, and 19 of a data channel command are

loaded into this register (Figure 16). Bit positions

S, 1, and 2 provide for eight possible data channel

operations. Each of the eight commands may accom-

plish either reading or writing. Position 19 is used

only for reading operations; it has no effect on writing

operations. When this position contains a 1, all func-

tions proceed normally except that no transmission

System Description 13

Data Channel Command

Oper Word Count r Address

S,1-2

i f

^-^19

Operation

Register

Figure 16. Data Channel Operation Register

of data to core storage occurs. Thus, a command with

position 19 containing a 1 may be used to skip over a

number of words (determined by the word count)

while reading from an input device. When posi-

tion 19 contains a 1, the data channel involved is

said to be operating in the non-transmitting mode.

Data Register. This 36-bit register serves as a buffer

between core storage and an input-output device.

Data Channel Register Example. An example is

shown in Figure 17. If core storage location 1546

contains the data channel command, represented here

as an octal number, 000124002117, and the instruction

reset and load channel A with an address of 1546 is

executed, then zeros will be placed in the operation

register, 00124 will be placed in the word register,

2117 will be placed in the channel address register,

and the location register will contain 1547.

Once a tape unit has been started by a select in-

struction, the data channel must receive its first com-

mand within a definite time period. Thus, the reset

and load channel must be executed by the main pro-

gram within this allotted time period following the

select order. Specific tape timings are given in the

magnetic tape section of "Input-Output Components/'
If the reset and load channel is not executed within

the allotted time period, the tape unit is logically dis-

connected from the calculator and no word transmis-

sion will occur. If a reset and load channel is given

at any time when an input-output device is not logi-

cally connected to the data channel, the instruction is

executed in the cpu but a special indicator, called the

input-output check indicator, is turned on. The status

of this indicator may be tested by the stored program.

Exact description, together with examples, of the

data channel commands is found in the "Computer
Instruction" section of this manual.

Instruction Location

01546

01547

00124 02117

y-»
1

17 19 21 35

1 1

00124 02117

oP

Register

Location Registei

Figure 17. Data Channel Register Example

Word
Register

Channel

Address Register

Data Channel Indicators (7607)

Each data channel has four indicators that may be

turned on during tape operations. These indicators

may be tested for the on condition. When tested, an

indicator that is on is turned off.

Tape Check Indicator. The tape check indicator

may be turned on at any time during a tape read or

write operation. When on, the indicator signals that

an error has occurred in a read or write operation.

The indicator will not be turned on unless the chan-

nel is logically connected to the cpu. For example, if

the tape has been logically disconnected from the

computer and is spacing to the next end-of-record

gap, the indicator will not be turned on if an error

is sensed during this period.

Beginning-of-Tape Indicator. Small strips of ad-

hesive aluminum material are placed a few feet from

each end of the tape. These strips are used to indicate

the beginning of tape (load point) and the physical

end of usable tape. Any instruction which backspaces

the tape to its load point or attempts to backspace the

tape beyond its load point turns on the beginning-of-

tape indicator in the data channel to which the tape

is attached, indicating that the backspace instruction

was not logically completed.

End-of-Tape Indicator. When the strip marking the

end of tape is reached during writing, the end-of-tape

indicator in the data channel to which the tape is

attached is turned on. No interruption in the writing

process occurs so that the writing operation may be

completed even though the end-of-tape strip has been

passed over. However, if the status of the indicator is

ignored and writing continues, the tape may eventually

be pulled from its reel. This indicator is never turned

on during a read operation.

End-of-File Indicator. The end-of-file indicator in a

channel will be turned on any time an end of file

(tape mark) is encountered during a reading opera-

tion. An end of file may be written on a tape at any

time by the write end of file (wef) instruction. The
indicator is not turned on when an end of file is

written.

The indicators for tape check, end of file, beginning

and end of tape may be turned on by any of the tape

units attached to a given data channel. To make a

meaningful test of the indicators, therefore, the stored

program should know which of the attached tape

units had the possibility of turning on an indicator.

The data channel's end-of-file indicator may also be

turned on by a card reader attached to that channel.

In addition to the instructions which test the status

of the indicators defined above, each data channel has

a set of instructions which facilitate the synchronous

operation of a stored program and its associated input-

14 ibm 7090

output activity. Two of these instructions test whether

or not a channel operation is still in process. By the

execution of another instruction it is possible to

obtain, at any time, the contents of the data channel's

operation register, channel address register, and loca-

tion register.

When an, end-of-file is sensed during reading, the

turning on of the channel's end-of-file indicator logi-

cally disconnects the input-output device from the

data channel. The execution of the channel com-
mand is terminated immediately, even if it has not

been completed. The internal registers of the data

channel are not reset. By obtaining the status of the

location register and the address register, the main
program may always ascertain the point at which the

end-of-file condition interrupted the input-output

operation.

Data Channel Trap

This feature allows the data channel to signal or in-

terrupt processing by trapping the computer program.

The trap may be initiated by: (1) the completion of

a channel command, (2) an end of file, or (3) a

redundancy tape check. These conditions are called

channel signals.

Two instructions, enable (enb) and restore chan-

nel traps (rct) , are used with this feature and are

described in the "Computer Instructions" section.

A trap indicator on the operator's console indicates

when a trap occurs. The execution of an enable or

restore channel trap instruction will turn the indi-

cator on. The execution of any trap will turn the in-

dicator off. With the indicator off, traps are said to

be inhibited.

A data channel is enabled by use of the enable in-

struction. This instruction conditions the channel so

that a channel signal may be combined with it, when
and if it occurs. When a channel is enabled for a

particular channel signal, all other channel signals

will not be used for trapping. Thus, the channel is

said to be disabled with regard to these other channel

signals. A logic flow chart of circuits involved with one

data channel is shown in Figure 18. Note that the

trap control indicator must be on for a trap to occur.

Data channels may be individually or collectively

prevented from causing traps until the program is able

to handle them. In this event the channel signal is

saved until the program allows it to become effective.

When a trap occurs, the contents of the instruction

counter (ic) are stored and the next instruction is

taken from a fixed location as follows:

Tape check

enabled

Any tape check
indicator

Channel com-

mand enabled

Any

channel com-

mand indicator

Enable

instruction

Both blocks

combined

End of file

enabled Both blocks

combined

Any end of file

indicator

Both blocks

combined

Any one
or more

blocks

"On"

Both blocks

combined

Restore channel

traps instruction

Either

block

"Tu Trap control

indicator

" Turn off"

-TRAP-

Figure 18. Logic Flow of Data Channel Trapping

System Description 15

CHANNEL STORE THE IC AT

A 0012
B 0014
C 0016
D 0020
E 0022
F 0024
G 0026
H 0030

NEXT INSTRUCTION FROM

0013
0015
0017
0021
0023
0025
0027
0031

The first instruction after execution of a trap should

be an unconditional transfer. If these instructions,

located at the odd locations 0013-0031, are not pro-

vided by the programmer and do not alter the con-

tents of the instruction counter, the program resumes

from the point at which the trap occurred (after ex-

ecuting the instruction at the odd location) . A trap-

ping signal occurs under the conditions listed below:

1

.

If an ioct, iort, or iost is used and no load chan-

nel instruction is waiting in the main program

upon completion of the command. A trap re-

sulting from this condition will cause the decre-

ment of the location in which the contents of the

instruction counter are stored to be cleared and

a 1 to be placed in position 17.

2. Whenever the end-of-file indicator is turned on.

A trap resulting from this condition will cause

the decrement of the location in which the con-

tents of the instruction counter are stored to be

cleared and a 1 to be placed in position 15.

3. Whenever a redundancy check occurs. With this

type of trap, the decrement of the location in

which the instruction counter is stored is cleared

and a 1 is placed in position 16.

If a trapping signal is generated while a channel is

disabled or inhibited, the trap request is remembered

until the channel is enabled or restored.

The instruction following an enable, restore chan-

nel trap, or execute instruction will always be executed

before another trap is processed. Furthermore, traps

are prevented from occurring between a read or write

select and the following (normally a reset and load)

instruction.

Execution of certain instructions, while a channel is

disabled, will cause the remembered trap to be lost.

This type of trap and the effect it produces are as

follows:

TYPE

Channel command

End-of-file

Tape check

EFFECT

Read or write selection of the

corresponding channel

Execution of a transfer on

end-of-file for that channel

Execution of a transfer on

tape-check for that channel

A tef or trc instruction, to a disabled channel,

will reset the eof or tape check indicator and will

be executed properly.

The end-of-file and tape-check indicators are turned

off whenever a trap results from an indicator's being

on. If the tape-check indicator is on for an enabled

channel (even though traps are inhibited) , the chan-

nel is immediately disconnected.

When a channel is enabled for a tape-check or end-

of-file condition, a transfer-on-redundancy-check or

end-of-file instruction addressing that channel will be

treated as a no-operation instruction.

If a trap is called for, subsequent to the execution

of certain halt instructions, the following procedure

occurs:

1. Halt and transfer. The trap is performed and

the cpu resumes execution of instructions. At

the time the trap occurs, the instruction counter

contains the location of the htr instruction.

2. Halt and proceed. This is the same procedure as

htr except that the instruction counter contains

the location of the hpr instruction plus one.

3. Divide or halt. The computer is restarted as

with the htr, except that the instruction counter

contains the location of the divide instruction

plus one.

A trap normally occurs at the completion of the in-

struction being executed. For example, if a trap is

called for while execution of a load-channel instruc-

tion is being delayed (command is incomplete) , the

trap does not occur until the load-channel instruction

has been completed. If a trap is called for while the

cpu is in manual status, no trap occurs until the cpu

is returned to automatic status and the start key is de-

pressed.

Programming Techniques

For programs utilizing data channel trap, certain char-

acteristics of the feature make some programming

techniques dangerous. If these techniques are used in

a program operating with data channel trap enabled,

random failures may occur which appear to be ma-

chine malfunction. Usually these failures are not re-

producible, owing to the random occurrence of the

i-o interrupts. Some techniques to be avoided are:

1. Execution of trcx or tefx instructions, when the

i-o interrupts are disabled, turn off the corresponding

trap indicator if it is on, causing a waiting trap to be

lost. If the indicator was on for either of these condi-

tions the instruction transfers correctly. Care must be

taken when testing these conditions, both in and out

16 ibm 7090

of the trap mode. A separate error checking routine

should be used for operating in each mode, since

conditions are different in both modes of operation.

2. Execution of tcox* does not guarantee that a

channel is not busy upon release. If interruption oc-

curs because of a condition sensed at I-time of the

tcox, the channel is disconnected, causing the tcox
to advance the instruction counter to the next location

following the tcox. The interrupt now occurs, as the

instruction is complete. If the interrupt routine re-

initiates i-o activity on the channel (to maintain high-

est possible i-o speed) , the channel is busy upon
re-entry, but the tcox has been bypassed. If an i-o

operation follows the tcox, its execution may cause

the trap normally resulting from the previous channel
activity to be dropped, also possibly causing the pro-

gram to hang up in a waiting loop. It is suggested that

a storage flag be kept for each channel to indicate

channel activity. This flag may be tested in a:

ZET
TRA

FLAG
*-l

Loop to act as pseudo-Tcox* delay. The flag must
be set to zero by the trap routine and set to non-zero

by any routine which executes a select on the channel.

3. No data cell common to both trap and non-trap

routines should be changed by the non-trap routine

without disabling the interrupt system, unless the cell

may be modified by one and only one instruction.

This is illustrated by the following program which
violates the above rule:

TRAP

NONTRP

. . . .save AC
CLA BETA
ADD ONE
STO BETA
. . . .restore AC

CLA BETA
SUB ONE
STO BETA

If a trap occurs between nontrp and nontrp -\-2, the

routine at trap will save the ac, add one to beta, and
store the augmented value back in beta. Upon reload-

ing the ac and re-entering the nontrp routine, the

old contents of beta are stored over the newly aug-

mented value. This could be prevented by disabling

the i-o traps before nontrp and re-enabling them after

nontrp +2.
4. If the i-o program is checking for noise records

in the end of record gap, the redundancy trap should

not be used to detect noise. Redundancy trapping

could occur while reading the first or second word
from tape, immediately disconnecting the channel

from the tape. A schx instruction to investigate the

length of this redundant record would show that the

record is only one or two words long, classing it as a

noise record. This is an error and may be prevented by
always testing for redundancy during the end of oper-

ation or end-of-file trap routine with a normal trcx
instruction.

5. Care must be taken when writing subroutines

which may be entered by both trap and non-trap

routines. Entry at trap time to a routine which has

been interrupted by the trap can give destructive

results.

6. Trap time subroutines which issue i-o selects

should insure that the selected channel is dormant

before giving the select. This may be difficult without

destroying or ignoring existing trap signals on the

selected channel.

For more information on trapping, see "Interrupt."

External Signal

A standard feature of the computer system is its ability

to accept a signal from an external source. This signal

is stored and will cause the computer to execute a trap-

ping operation as soon as possible. Normally, upon

receipt of an external signal, the instruction being

executed is completed and the location of the next in-

struction is stored in the address portion of core loca-

tion 0003. The computer then takes its next instruc-

tion from location 0004. If, however, the current in-

struction is a floating point trap instruction which

causes overflow or underflow, the floating point trap

will be executed before the external signal trap is al-

lowed to occur. The external signal trap is completely

independent of data channel traps. Significant im-

plications of this are:

1. If the computer is halted, the trap will not occur

until the start key is depressed and the halt op-

eration is completed.

2. It is not possible to disable or inhibit an external

signal trap.

3. The external signal trap is unconditional in

that it may occur between an input-output select

instruction and the following instruction, a re-

store channel traps or enable instruction and the

following instruction, or an execute instruction

and the instruction to be executed. If a trap oc-

curs at one of these times and the external sig-

nal trap subroutine is then interrupted by a data

channel trap, timing limitations may be ex-

ceeded and/or the program may return to the in-

correct re-entry location in the main program.

System Description 17

Computer Instructions

This section defines all computer instructions and
describes their execution, indicators that may be
affected, and timing.

A diagram representing the format of the instruc-

tion is given for each instruction. Preceding this dia-

gram is the alphabetic code which identifies the in-

struction. The official name of the instruction is also

given (Figure 19).

CLA - Clear and Add

Operation Flag Tag

-K)500 u
14 17 18-20 21

Figure 19. Sample Format of Instructions

The numerical operation code is given in the octal

number system. This can be easily converted to the

binary system for reference to the bit pattern inter-

preted by the computer. The numbers appearing be-

neath the diagram indicate the bit positions of the

computer-word that are concerned with this particular

instruction.

The symbol "Y" appearing in the diagram denotes

the address part of the instruction. Y may stand for

the address of a word in core storage, the length of a

shift, or the address of an input-output unit. For some
index transmission instructions, Y may also represent

a number which is to be loaded either in true or com-
plement form into an index register.

For some instructions, positions 21-35 are used to

contain part of the operation code. The appearance
of octal numbers instead of Y in the address field will

distinguish this type of instruction from others. In
all cases, the full operation code is shown by its octal

representation.

Those instructions for which indirect addressing

may be specified will have the symbol F (flag) ap-

pearing in positions 12 and 13 of the instruction dia-

gram (Figure 19). This symbol represents 1 bits in

both positions 12 and 13 of the instruction. The de-

scription of those operations which can have indirect

addressing will be defined in terms of direct address-

ing.

Similarly, for instructions that are subject to effec-

tive address modification by an index register, the dia-

gram has the symbol T in the tag field of the instruc-

tion. This T is also used to specify any index register

to be changed, stored, or tested. The description ac-

companying an instruction defines the manner in

which it is executed when its tag is zero.

The shaded area in the instruction diagrams repre-

sent fields that are not used in that instruction.

The symbols D, C, and R are used to denote the

decrement, count, and right-half word fields of in-

structions which use these fields. Each of these fields

is interpreted only by certain classes of instructions.

If such a field is interpreted by an instruction, the bit

positions used by the field will be shown in the instruc-

tion diagram. If an instruction has a D or R part,

neither indirect addressing nor effective address modi-
fication is ever possible.

Descriptions of the instructions use the following

special terms and definitions:

1. C(Y) denotes the contents of location Y, where
Y refers to some location in storage. Similarly, c (ac) ,

c (mq) , c (sr) and c (si) denote the contents of the ac-

cumulator, multiplier-quotient, storage and sense in-

dicator registers, respectively. In addition, subscripts

refer to individual bit positions of a register. For
example, c (mq) s>^ is read "the contents of positions

S, 1 through 17 of the mq." When subscripts are not

used with this notation, the entire register is implied.

For example, c (ac) denotes the contents of positions

s,Q,p, 1-35, inclusive.

2. With input-output operations, dc denotes data

channel, lr denotes a dc location register, ar denotes

a dc address register, and wr denotes a dc word count
register.

3. When a register or part of a register is cleared,

the cleared part is reset to zeros.

4. The negative of a number is the number with its

sign reversed.

5. The magnitude of a number is the number with
its sign made positive. (A zero in position S corre-

sponds to a positive sign.)

6. When the word "store" is used in the title of an
instruction, the transmission of a word or part of a

word from some special register (e.g., the ac, mq, si

or an index register) to some location in core storage

is always implied.

7. When the word "load" is used in the title of an
instruction, the transmission of a word or part of a

word from some location in core storage to some
special register (e.g., tne mq, si, or dc registers, but not

the ac) is always implied.

18 ibm 7090

8. When the word "place" is used in the title of an

instruction, the ac is always one of the agents.

9. All logical operations interpret the sign position

(S) of Y as a numerical binary bit corresponding to

position P of the ac or position of the si. The S

position of the ac is either ignored or cleared by

logical operations.

10. In the three-letter alphabetic code:

a. The letter Q designates the mq register.

b. The letter X in the second or third position

designates an index register.

c. The first letter of all transfer instructions

is a T.

In the following instruction descriptions, an instruc-

tion format is shown for each instruction. Under the

"Indicator" heading, only those indicators that may
alter the course of a program through test instruc-

tions or by trapping are noted. Under the "Execu-

tion" section, when instructions are similar, only the

differences are noted and a statement (e.g., "Same as

add procedure") will mean that the operations are

alike except for the differences noted. Instruction

flow charts are used with many instructions to aid in

presenting the data flow.

Note again that all addresses and numbers, unless

otherwise specified, are given in the octal number sys-

tem.

Instruction Timing

All instructions are listed in the appendix in alpha-

betic and numerical sequence. Timing is noted in

cycles with modification type, if any. The 7090 cycle

is 2.18 microseconds. If an instruction is subject to

address modification through indexing and /or in-

direct addressing the facts will be noted by a T or F,

respectively. With indirect addressing, the execution

time is increased one cycle. The modification types

are:

Type 1 Instructions. Multiply instructions are exe-

cuted in two cycles if the number brought from stor-

age contains zeros in positions 1 to 35. If the number
brought from storage is not all zeros, execution time is

a function of the number of sequential zero bits in

the multiplier.

Type 2 Instructions. The execution time of these

instructions is determined by the count field (C)

specified in positions 10 through 17. The maximum
number of cycles for a given value is C/3 + 3. Any
remainder should be discarded.

Type 3 Instructions, fad, fam, fsb, and fsm will be

executed in 6 cycles if the difference in character-

istics is greater than 63 or if the extent of shift is less

than 10 places during the adjustment of character-

istics (step 5) ; also if the extent of shift is less than

four places when normalizing (step 9b)

.

Type 4 Instructions, ufa, uam, ufs and usm will be

executed in five cycles if the difference in character-

istics is greater than 63 or if the extent of shift is less

than 10 places in step 5.

Type 5 Instructions. The execution of a fdh or

fdp instruction requires only three cycles if the frac-

tion of the dividend is zero.

Type 6 Instructions. The execution of a convert in-

struction is increased by one cycle for each storage

reference specified by the count field in positions 10

through 17 of the instruction.

Type 7 Instructions. The instruction will be exe-

cuted in two cycles if the extent of shift is 16 places

or less. Each additional 12 shifts, or portion thereof,

require another cycle.

Type 8 Instructions. The execution of these in-

structions may be delayed an indefinite length of time

after interpretation, depending on the status of the

i-o unit. For example, if multiple select instructions

are given for the same data channel, the second select

will be delayed if both selects are of the data-select

type of operation.

All variable cycle instructions that have a precise

minimum, average and maximum number of machine

cycles are shown in Table I.

Table I. Variable Cycle Instructions

MACHINE CYCLES
INSTRUCTIONS AVERAGE MIN. MAX.

MPY, MPR 11.6 2 14

DVH, DVP 14 3 14

FMP, UFM 11 2 13

FDH, FDP 13 3 13

FAD, FAM, FSB, FSM 6.4 6 15

UAM, USM — 5 11

UFA, UFS — 5 10

ALS, ARS, RQL — 2 4
LLS, LRS, LGL, LGR — 2 7

CAD, CAQ, CVR — 9 8

VDH, VDP, VMP — 2 14

Instructions with a count whose value is larger than

that implied by the size of the arithmetic registers

may exceed the times shown. Average multiply times

are derived assuming a random distribution of ones

and zeros. In floating-point, a normalized operand is

assumed. In determining the average floating-point

add speed, a number of representative programs were

traced. The time shown is based on an analysis of

several million operands.

Computer Instructions 19

Fixed Point Operation

CLA -Clear and Add

+0500

11 12-1314 17 18-2021

Description. The c(ac)s>^ are replaced with the

c (y) . Positions P and Q of the ac are set to zero.

The c (y) remain unchanged.

Indicators. None.

Timing: 2 cycles

Execution. The c(y) are brought to the sr. c(sr) 1 .35

is taken to the adders, the adders to ac (1 .35) and the

SR(S) tO AC(S).

CAL- Clear and Add Logical Word

-0500

Description. The c(y) replace the c(ac) p>1 _35 . The
sign of Y appears in position P of the ac. Positions

S and Q of the ac are set to zero. The c (y) are un-

changed.

Indicators. None.

Timing: 2 cycles

Execution. The sr (S) goes to adder position P. The
rest of the operation is the same as for cla.

CLS — Clear and Subtract

+ 0502 M
11 12-1314 17 182021

Description. The negative of c (y) replaces the

c (ac) S)1 _35 . Positions P and Q of the ac are set to

zero. The c (y) are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. (1) Invert sign of Y as it is entered into

the SR. (2) Same as cla.

The logic flow diagram for both the cla and cls

instructions is shown in Figure 20.

ADD -Add

+0400 F
fts^^

T Y
11 12-1314 17 18-2021

Description. The c (y) are algebraically added to

the c (ac) . The resulting sum is placed in the ac.

Obtain instruction

from storage

s,i-n

Instruction placed

in storage register
21-35

v i

Operation code

placed in inst. reg,

Address routed

through adders tostg.

v v

Operation decoded

in decoders

Address of data is

located

v v

Bring up execution

control lines

CLA, CAL Data routed to the

storage registeri

rCLS< CAL I f

Minus to storage

register sign
SR sign to

adder P

Data routed through

adders to accumulator

Figure 20. cla and cls Flow Chart

The c (y) are unchanged. Numbers of the same mag-

nitude but different signs give a resultant sign the

same as the sign of the original ac.

Indicators, ac overflow.

Timing: 2 cycles

Execution. The c (y) are taken to the sr and then

to the adders. With signs alike, the true ac (Q-35) is

also taken to the adders, and the sum returned to the

ac. With signs unlike, the complement of the ac

(Q-35) is taken to the adders; any Q carry is taken

to adder 35 and is remembered. The resultant sum
in the adders is then taken back to the ac. If the

signs were unlike and there was no Q carry, the com-

plement of the ac (Q-35) is again taken to the adders

and then back to the ac. With a Q carry, reverse the

ac sign (Figure 21).

ADM — Add Magnitude

+0401 F T Y

Description. The magnitude of the c (y) is added
to the c (ac) . The resulting sum is placed in the ac.

The c(y) are unchanged. The sign of Y is ignored

and Y is treated as a positive number. With a minus
ac sign, a subtractive process will occur.

Indicators. AC overflow.

Timing: 2 cycles

Execution. (1) sr (s) is forced plus. (2) Procedure

is the same as for add.

20 ibm 7090

SUB -Subtract

+ 0402 F
lift

T Y
11 12-1314

Description. The c (y) are algebraically subtracted

from the c (ac) . The difference replaces the c (ac) .

The c (y) are unchanged.

Indicators. AC overflow.

Timing: 2 cycles

Execution. (1) Sign of sr is reversed. (2) Same

as add procedure.

the c (ac) . The sign of Y is ignored and the c (y) are

treated as a negative number. The c (y) are un-

changed. If the sign of the ac is minus, an add will

occur.

Indicators. AG overflow.

Timing: 2 cycles

Execution. (1) sr (s) is forced minus. (2) Same as

add procedure.

The logic flow diagram for the add, sub, adm, and

sbm instructions is shown in Figure 21.

SBM — Subtract Magnitude

•0400

11 12-1314 17 18-2021

Description. The magnitude of the c (y) is sub-

tracted from the c (ac) . The difference is placed in

ACL — Add and Carry Logical Word

+ 0361 F T Y
11 12-1314 17 18-2021

Description. The c (y) are added to the c (ac) p>1 _ 35 .

The resultant sum replaces the c(Ac) Pfl _35 . The sign

Operation code placed in

instruction register

Operation code decoded

in operation decoders

Obtain instructio

from storage

Instruction placed in

storage register

Bring up execution

control lines

ADD
u

\
SBM SUB

\
ADM

minus

to SR

sign

invert

SR

sign

plus

to SR

sign

L_ I I

Address routed through

adders to storage

Address of data is

located

Data routed to the

storage register

Data from the storage

register to adders

unlike Compare

Complement accumulator

to the adders
J ^•v. signs y^

I alike

Accumulator to the

adders in true form

i

f

Adders back to the

accumulator

1
f

Check signs and Q
carry and adjust

the accumulator

>
'

Answer is now in the

accumulator

Figure 21. add, adm, sub, and sbm Flow Chart

Computer Instructions 21

of Y is added to position P of the ac. A carry from
ac (p) is added to ac (35) . Positions S and Q of the

ac are not affected.

Indicators. None.

Timing: 2 cycles

Execution. The c(y) are taken to the sr. The
sr(s, 1-35) are then taken to the adders (P, 1-35) . An
adder P carry goes to adder 35. Adders (P, 1-35) are

then returned to ac (p, 1-35)

.

MPY- Multiply

+ 0200

Description. The c(y) are multiplied by the c(mq).

The 35 most significant bits of the 70-bit product re-

place c(ac)
i .35 and the 35 least significant bits re-

place the c(mq)
1 .35 . ac (p and q) are cleared. The

signs of the ac and mq are set to the algebraic

sign of the product. The number of bits to the right

of the binary point of the first factor added to the

number of bits to the right of the binary point of the

second factor give the total number of bits to the right

of the binary point in the product.

Indicators. None

Timing: 2-14 cycles, modification 1.

Execution. (1) The c(y) are tested, and if the

magnitude of the c (y) is zero, the c (ac) and c (mq)
are cleared. Step 2 is skipped and step 3 occurs. (2)

If the magnitude of the c (y) is not zero, the c (ac)

q,p,i-35 are cleared and multiplication proceeds:

a. If mq35 contains a 1, the c(y)
1 . 35 are added to

the ac. The c(ac) QjPj1 _35 and the c(mq)
1 . 35 are

then shifted right one position.

b. If mq35 contains a 0, the c (ac) q>P)1 _3 5 and c (mq)

3

_

35 are shifted right one position. Step 2 occurs

3 times per cycle on the 7090. With sequential

zeros, up to 12 shifts may occur per cycle.

(3) If the signs of the mq and location Y are the

same, the signs of the ac and mq are made positive. If

the signs differ, the signs of the ac and mq are made
negative.

As an example, assume that the ac, mq, and location

Y are four bits in length instead of 35. The following

sequence of steps would occur during a multiply. The
number 13 is in the mq and the c (y) are 6. The
actual bit-configuration appears in each register (after

the step is complete).

The flow chart is shown in Figure 22.

AC MQ Y

0000 1101 0110

0110 1101

0011 0110

0001 1011

0111 1011

0011 1101

1001 1101

0100 1110

COMMENTS

Initial contents of the registers, mq 35 ready
to be tested.

c (y) added to ac since mq 35 is a 1

.

c (ac, mq) shifted right one place. Test mq
35.

No addition, since mq 35 contained a 0.

c (ac, mq) again shifted right and mq 35
is tested.

c (y) added since mq 35 is a 1.

c (ac, mq) shifted right and mq 35 tested.

c (y) added, since mq35 is a 1.

c (ac, mq) shifted right. At this point the
shift counter has been reduced to zero and
the process stops with the eight-bit prod-
uct in the ac and mq registers.

MPR- Multiply and Round

-0200

*''
11 12-1314 17 18-20 21

" "

Description. This operation is the same as multiply
except that the c (ac) are increased by 1 if mq(1)
contains a one after multiplication is complete.

Indicators. None.

Timing: 2-14 cycles, modification 1.

Execution. (1) Develop the product as in multiply.

(2) If mq (1) contains a 1, add a 1 to ac (35)

.

RND- Round

+0760 10
17 18-20 21-23 24

Description. If position 1 of the mq contains a 1,

the c(ac) are increased by one. If mq(1) contains a

0, the c (ac) are unchanged. In either case the c (mq)
are unchanged. Note that positions 24-35 of this in-

struction represent part of the operation code. Modi-
fication by indexing may change the operation code
itself.

Indicators. AC overflow.

Timing: 2 cycles

Execution. If mq(1) contains a 1, the c (ac) q _35 is

sent to the adders with a carry to adder 35. The adder

(q-35) is then taken to ac (q-35) . If mq(1) contains

a 0, no rounding occurs.

VLM- Variable Length Multiply

+0204 E!c T Y

Description. This instruction multiplies the c(y) by

the C low-order bits of the c (mq) , to produce a 35 + C

22 ibm 7090

Instruction in the

storage register

v >f

Address through the

adders to storage

Operation code placed

In the instruction reg.

V V

Operation is decoded Address of data is located

> ' v

Bring up execution

control lines

Data routed to the

storage register

MPY
VLM ^ \ MPR

Inst,

> f
x
<

Set count Set 43 in

field in shift ctr.

shift ctr.

= 1

Add storage register

to AC

Do not add SR

to accumulator

Take result to AC
3.

Shift AC and MQ
right 1 place

Shift ctr

~ ^ <^N\ C3V _,
MPR <Q Inst. ^>Ada 1 to ml -<

>

=

1 MPY, VLM

Operation complete—^*

Figure 22. mpy, mpr, vlm Instruction Flow Chart

bit product. The 35 most significant bits of the prod-

uct replace the c (ac) lm35 and the C least significant

bits replace the c (mq) 1 through C. Positions Q and

P of the ac are cleared. The remaining 35—C posi-

tions of the mq will contain the original 35—C high-

order positions of the mq. The sign of the ac and

mq is the algebraic sign of the product. An example

is shown in Figure 23.

If C is zero, the instruction is interpreted as a no-

operation and the computer proceeds directly to the

next instruction in sequence, leaving the ac un-

changed.

If C is not zero but the c (y) are zero, the c (ac) and

c (mq) are cleared. If the signs of the mq and location

Y are the same, the signs of the ac and mq are made
positive. If the original signs of the sr and mq differ,

the signs of the ac and mq are made negative. Note:

A count field which places a 1 bit in both positions 12

and 13 (60 or larger) will cause indirect addressing.

In general, counts larger than 35 are meaningless.

Indicators. None.

Timing: 2-14 cycles, modifications 1 and 2

Execution. The instruction is the same as multiply

except that the contents of the count field, instead of

43, are placed in the shift counter.

Figure 22 shows the flow chart for mpy, mpr, and

vlm instructions.

AC MQ
Before

multiplication

1

1 35

V J

1 C bit multiplier 35

After

multiplication

35 +C bit product 35 - C unused bits

of MQ

Figure 23. Variable Length Multiply

Computer Instructions 23

DVH - Divide or Halt DVP — Divide or Proceed

+ 0220 + 0221

Description. The c(ac) q>p>1 _35 and the c(mq) 1 .35 are

treated as a 70-bit dividend plus sign, and the c(y) as

a 35-bit divisor. If the magnitude of c(y) is greater

than the magnitude of c(ac), division takes place. A
35-bit quotient replaces the c(mq) 1 .35 and the re-

mainder replaces the c(ac)
1 .35 . The mq sign is the

algebraic sign of the quotient and the ac sign is the

sign of the dividend.

If the magnitude of the c (y) is less than or equal

to the magnitude of the c (ac) , division does not occur

and the computer stops with the divide-check indi-

cator on. For example, if Q or P of the ac contains a

1, the magnitude of the c (y) is less than the c(ac).

If division does not occur, the dividend remains un-

changed in the ac and mq.

Indicators. Divide check

Timing: 3-14 cycles.

Execution. (1) The c (ac and mq)^ are shifted

left one position, creating a zero in position 35 of the

mq. (2) If the magnitude of the c (y) is less than or

equal to the magnitude of c (ac) , the magnitude of

c (y) is subtracted from the magnitude of c (ac) and
a one replaces the zero in mq35 . Step 1 is then repeated

(Figure 24). (3) If the magnitude of the c (y) is

greater than the magnitude of the c(ac), the com-
puter returns to step 1.

The above process occurs 35 times for each division,

three times per machine cycle.

The following example is a division problem. Again
assume a four-bit machine. The problem is 66 divided

by 5, and the binary numbers represent the result of

the described step.

Y COMMENTS

0101 Initial contents, c (ac) less than c (y) ; divi-

sion will take place.

c(ac and mq) shifted left one place; c (ac)
greater than c (y).

c (y) subtracted from c (ac) and a 1 replaces
mq 35.

c(ac and mq) shifted left one place; c (ac)
greater than c (y).

c (y) subtracted from c (ac) and a 1 replaces
mq 35.

c(ac and mq) shifted left one place; c (ac)
less than c (y) .

c(ac and mq) shifted left one place; c (ac)
greater than c (y).

c (y) subtracted from c (ac) and a 1 replaces
mq 35.

The quotient is now complete in the mq
with the remainder in the ac.

AC MQ

0100 0010

1000 0100

0011 0101

0110 1010

0001 1011

0011 0110

0110 1100

0001 1101

S '] 11 12-1314 17 18-2021

Description. If the magnitude of the c (y) is greater
than the magnitude of the c (ac) , division occurs as

with the dvh instruction. If the magnitude of the
c(y) is less than or equal to the magnitude of the
c(ac), the divide-check indicator is turned on and
the computer proceeds to the next instruction.

Indicators. Divide check

Timing: 3-14 cycles.

Execution. Exactly the same as dvh except that in-

stead of halting, when a divide-check occurs, the com-
puter executes the next sequential instruction (Figure

24).

VDH- Variable Length Divide or Halt

+0224 |-*F Y

Description. This instruction is the same as a dvh
except that a C-bit quotient plus sign replaces the C
low-order positions of the mq. The remainder replaces

the c (ac) Lgs and the 35—C high-order positions of the

mq. Instead of 43 being placed in the shift counter
initially, C is placed there. If G is zero the instruction

is interpreted as a no-operation and the computer
proceeds directly to the next instruction in sequence.

Indicators. Divide check.

Timing: 2-14 cycles, modification 2

Execution. The same operation as dvh except as

noted above.

Note: Indirect addressing may occur if the count
field places 1-bits in positions 12 and 13 of the instruc-

tion (Figure 24).

VDP — Variable Length Divide or Proceed

+ 0225 jt;

Description. This instruction is the same as dvp
except that a C bit quotient with a sign replaces the

C low-order positions of the mq. The remainder re-

places the c(ac)
1 .35 and the 35-C high-order posi-

tions of the mq. C rather than 43 is placed in the

shift counter initially. If C is zero the instruction is

interpreted as a no-operation and the computer pro-

ceeds directly to the next instruction in sequence.

Indicators. Divide check.

Timing: 2-14 cycles, modification 2

24 ibm 7090

Instruction in the

storage register

Operation is cecoded

t

DVP
DVH r<^>n VDP

VDH

,
r

1 f

Set 43 In

the shift

counter

Set C In

the shift

counter

VDH
DVH

Inst.

DVP
VDP

Stop Proceed

Address of data is located

and in storage register

(Divisor)

Shift C(AC and MQ)
1 place to the left

(MQ1 to AC 35)

Operation complete

Quotient in MQ.
Remainder in AC.

Figure 24. dvh, dvp, vdh, and vdp Flow Chart

Execution. The same procedure as dvp except as

noted above.

Note: Indirect addressing may occur if the count

field places 1 bits in positions 12 and 13 of the in-

struction.

Figure 24 shows the logic flow chart for dvh, dvp,

vdh, and vdp instructions.

Floating Point Operations

The following operations are divided into two groups

to describe the processing of floating-point numbers

in either normalized or unnormalized form. The pos-

sibility of floating-point overflow or underflow during

the execution of a floating-point instruction is indi-

cated by an asterisk (*) . All conditions of underflow

and overflow are discussed following the last floating-

point instruction.

Floating Point Arithmetic

The algebraic addition of two floating-point num-

bers in the computer is analogous to the ordinary al-

gebraic addition of two signed numbers with decimal

points. An example is the algebraic addition of the

two numbers 100 and —0.1009:

100.0000

- 0.1009

99.8991

Note that the second number must be shifted to the

right to line up the decimal points, and that the first

number must be supplied with additional zeros. The
same addition performed with numbers expressed in

floating-point decimal form, would be:

.1000 X 10 3

-.1009 X 10°

Again, before the addition, the lower number is

shifted to the right with a compensating change in

Computer Instructions 25

the exponent and corresponding zeros are added to

the number on the upper line:

.1000000 X 10 3

-.0001009 X 10 3

.0998991 X 10 3 = .998991 XlO 2

Note also that the digits of the answer must be moved
to the left to be in normalized form and that the final

fraction contains more digits than either of the two

numbers involved in the addition.

In the computer the two numbers are expressed as

binary fractions, each having an 8-bit binary char-

acteristic to represent the exponent of 2. The "lining

up" is done by shifting from the ac into the mq. The
result of an addition or multiplication is normalized by

shifting the fractions in the ac and mq left while mak-

ing compensating changes in the characteristic of the

sum or product.

FAD -Floating Add

+0300

Description. The floating-point numbers located in

Y and the ac are added together. The most significant

portion of the result appears as a normal floating-point

number in the ac. The least significant portion of the

result appears in the mq as a floating-point number
with a characteristic 33 (octal) less than the ac char-

acteristic. The signs of the ac and mq are set to the

sign of the larger factor. The sum in the ac and mq
is always normalized whether the original factors were

normal or not. If c (ac) ± .35 contain zeros, the fad may
be used to normalize an unnormal floating-point num-
ber.

Indicators. Floating-point underflow, overflow, and

floating-point trap.

Timing: 6-15 cycles, modification 3

Execution

1. The mq register is cleared to zeros.

2. The c (y) are placed in the sr.

3. If the characteristic in the sr is less than the

characteristic in the ac, the c (sr) and c (ac) Sj ^g are

interchanged, as the number with the smaller char-

acteristic must appear in the ac before addition can

take place.

4. The mq is given the same sign as the ac.

5. If the difference in the characteristics is greater

than 63, the c (ac) are cleared. If the difference in

the characteristics is a number N less than or equal

to 63, the c (ac) 9 .35 are shifted right N places. Bits

shifted out of position 35 of the ac enter position 9

of the mq. Bits shifted out of position 35 of the mq
are lost.

6. The characteristic in the sr replaces the c (ac) lmB .

7. The c (sr) 9 . 35 are added to the c (ac) 9 .35 and this

sum replaces the c (ac) 9 .35 . If the signs of the ac and

sr are unlike, the c (sr) 9 .35 are added to the l's com-

plement of the c (ac) 9 .35 . Since the c (ac) 9 .35 repre-

sent a pure fraction, the magnitude of their l's com-

plement is equal to (1 — 2-27
)
— c(ac) 9 .35 .

8. Regardless of the sign or relative magnitudes of

the sr and ac, the result appears in double-precision

form with signs alike in both the ac and mq. If the

signs of the ac and sr are the same and the magnitude

of the sums of the fractions is greater than or equal to

one, there is a carry from position 9 into position 8

of the ac. Thus, the characteristic of the ac is in-

creased by one. # In this event, the fractions of the

ac and mq are shifted right one position and a 1 is

inserted into position 9 of the ac. If the signs of the

ac and sr are different, there are two cases, both de-

pending on the difference between the sr and ac

fractions.

Case 1. If the magnitude of the SR fraction is

greater than the fraction in the ac, the ac and

mq signs are both changed to the sign of the sr.

If the fraction of the mq is zero, the difference

between the fractions of the sr and ac is placed

in the ac. If the fraction of the mq is not zero,

the difference between the fractions of the sr and

ac, minus one, is placed in the ac; the 2's com-

plement of the mq fraction replaces the fraction

in the mq.

Case 2. If the magnitude of the sr fraction is less

than the fraction in the ac, the difference of the

two fractions replaces the fraction of the ac. The
sign of the ac and the entire mq remain un-

changed.

9a. If the resulting fractions in both the ac and

mq are zero, the ac is cleared, yielding a normal zero.

If the fractions are in normalized form before the fad

is given, this result can only occur if the signs are

different and the c (y) lm35 are equal to the c (ac) 1 .35 .

The signs of the ac and mq will be equal to the sign

of the number originally in the ac. If the resulting

fraction in the ac is zero and the two numbers were

not in normalized form before addition, the signs of

the ac and mq are equal to the sign of the original

number having the smaller characteristic.

9b. If the resulting fractions in the ac and mq are

not zero, the fractions of the ac and mq are shifted

left until a 1 appears in position 9 of the ac. Bits

enter position 35 of the ac from position 9 of the mq.

The characteristic in the ac is reduced by one for each

26 ibm 7090

position shifted.* No shifting is necessary if the frac-

tion of the ac is in normal form at the beginning of

this step.

10. The mq is given a characteristic which is 27

less than the characteristic in the ac,* unless the ac

contains a normal zero, in which case zeros are left

in positions 1-8 of the mq.

If the P and/or Q positions of the ac are not zero

before the execution of the fad, the result will usually

be incorrect. Non-zero bits in P and/or Q which are

initially interpreted as part of the ac characteristic

make it larger than the characteristic in the sr so that

the interchange in step 3 will always take place. Dur-

ing the interchange a 1 will be placed in position S

of the sr if there is a 1 in either S or P positions of the

ac, so that the sign of the number may be changed.

Any bit in Q is lost during the interchange and both

P and Q are cleared when the c (sr) replace the c (ac) .

The difference between the two characteristics is com-

puted after the interchange occurs, so that in step 5,

N will not be equal to the difference between the

original characteristics. In step 6 the characteristic in

the sr, with its Q and P bits missing, replaces the char-

acteristic in the ac. Consider as a sample problem the

addition of:

2 2 X .1001 =
2 5 X .1001 =

(SR) +10000010.1001

(AC) +10000101.1001

First, the exponents must be equalized and then the

addition may proceed. The characteristics are checked

and found unequal, with the largest in the ac. The
numbers in the ac and sr are then exchanged, giving:

+ 10000101.1001SR

AC + 10000010.1001

The mq content is zeros at this time. The c (ac) 9 _35

are then shifted right the number of places needed to

equalize the exponents. (Remember that the binary

point is located between positions 8 and 9 of all regis-

ters.) The registers then appear as:

SR

AC

MQ

+ 10000101.1001

+ 10000101.0001

+00000000.0010

the ac fraction (27 in the computer, 4 in this ex-

ample) :

sr +10000101.1001

ac +10000101.1010

mq +10000001.0010

Decoding the results into the original format, we find:

2 5 X .1001 MQ = 2 1 X .0010 = 2 5 X .00000010

2 5 X.0001001 AC = 2 5 X.1010

2 5 X. 1010001 resultant sum = 2 5 X .10100010

FAM — Floating Add Magnitude

+0304

11 12-1314 17 18-2021

Description. This instruction algebraically adds the

positive magnitude of the floating-point numbers con-

tained in Y to the signed floating-point number in

the ac. The sum is normalized.

Indicators. Floating-point underflow and floating-

point overflow; floating-point trap.

Timing: 6-15 cycles, modification 3

Execution. The same procedure as fad except that

the magnitude of the number in the sr is used (sr

sign is forced plus)

.

UFA— Unnormalized Floating Add

-0300 F T Y

Description. This instruction algebraically adds two

floating-point numbers contained in the ac and Y.

The sum is not normalized.

Indicators. Floating-point underflow and floating-

point overflow; floating-point trap.

Timing: 5-10 cycles, modification 4

Execution. The same procedure as fad except that

no normalizing will occur (step 9) .

The fractions (positions 9-35) may now be added.

+ 10000101.1001SR

AC

MQ
+ 10000101.1010

+00000000.0010

AC position 9 is checked for a 1 and no normalizing

occurs. The mq characteristic is now set. It is equal

to the ac characteristic minus the number of places in

FSB — Floating Subtract

+0302 F T Y

Description. This instruction algebraically subtracts

the floating-point number located in Y from the float-

ing-point number in the ac, and normalizes the re-

sult.

Computer Instructions 27

Indicators. Floating-point underflow and floating-

point overflow; floating-point trap.

Timing: 6-15 cycles, modification 3

Execution. The same procedure as fad except that

the negative of the c (y) are placed in the sr (sr sign

is reversed)

.

UAAA — Unnormalized Add Magnitude

•0304 Y

Description. This instruction algebraically adds the

magnitude of the floating-point number contained in

Y to the signed floating-point number in the ac. The
sum is not normalized.

Indicators. Floating-point underflow and floating-

point overflow; floating-point trap.

Timing: 5-11 cycles, modification 4

Execution. The same procedure as fad except that

the sign of the number in the sr is made positive and
the result is not normalized.

FSM — Floating Subtract Magnitude

+0306

11 12-1314 17 18-2021

Description. This instruction algebraically sub-

tracts the magnitude of a floating-point number stored

at Y from the signed floating-point number in the ac.

The result is normalized.

Indicators. Floating-point underflow and floating-

point overflow; floating-point trap.

Timing: 6-15 cycles, modification 3

Execution. The same procedure as fad except that

the negative magnitude of the contents of Y are used

(sr sign is forced minus)

.

UFS — Unnormalized Floating Subtract

•0302

11 12-1314 17 18-2021

Description. This instruction algebraically subtracts

the floating-point number located in Y from the float-

ing-point number in the ac. The result is not nor-

malized.

Indicators. Floating-point underflow and floating-

point overflow; floating-point trap.

Timing: 5-10 cycles, modification 4

Execution. The same procedure as fad except that

the negative of the contents of Y are placed in the

sr and normalizing does not occur.

USM — Unnormalized Subtract Magnitude

•0306 Y
11 12-1314 17 18-2021

Description. This instruction algebraically sub-

tracts the magnitude of a floating-point number stored

at Y from the signed floating-point number in the ac.

The result is not normalized.

Indicators. Floating-point underflow and floating-

point overflow; floating-point trap.

Timing: 5-11 cycles, modification 4

Execution. The same procedure as fad except that

the negative magnitude of the contents of Y are used

and the result is not normalized.

The differences between answers, received after

execution of a floating-point add or subtract opera-

tion, when using a 704 or 7090 system is a matter

of increased precision and is summarized as:

704

1

.

Accumulator sign and

mq sign not neces-

sarily the same.

2. Characteristic differ-

ence between accu-

mulator and mq is

usually 2710 , but it

can be 2810 when add-

7090

Accumulator sign and

mq sign are guaranteed

to be equal.

Characteristic difference

between accumulator

and mq is always 27 10 .

ing numbers

like signs.

of

If the accumulator is

zero and the mq is

not, the sum will not

be shifted and the ac-

cumulator will be

made equal to a nor-

mal zero.

FRN — Floating Round

If the accumulator is

zero and the mq is not,

the mq factor will be

shifted in order to nor-

malize the sum.

+0760
11

17 18-20 21-23 24

Description. Floating-point add, subtract, and mul-

tiply produce a double-word result. The instruction

28 ibm 7090

frn will add 1 to position 35 of the ac if the mq frac-

tion is equal to or exceeds half the magnitude of a

1-bit in ac 35. The ac is corrected if rounding re-

sults in a carry from ac 9.

Indicators. Floating-point overflow, floating-point

trap.

Timing: 2 cycles

Execution. If mq 9 contains a 1, a carry will be

added to ac 35. A carry out of ac 9 increases the char-

acteristic of the ac by 1, causes the fraction of the ac

to be shifted right and a 1 to be placed in ac 9. Since

the address part of this instruction represents part of

the operation code, any modification by an index reg-

ister may result in changing the operation itself.

FMP — Floating Multiply

-K)260 Y
11 12-1314 17 18-2021

Description. The c (y) are multiplied by the c(mq).

The most significant part of the product appears in

the ac and the least significant part appears in the

mq. The product of two normalized numbers is in

normalized form. If either of the numbers is not nor-

malized, the product may or may not be in normalized

form.

Indicators. Floating-point underflow, floating-point

overflow, and floating-point trap.

Timing: 2-13 cycles, modification 1

Execution

1. The c(y) are placed in the sr and the ac is

cleared.

2a. If the multiplicand is a normal zero so that

G (sr) 1-35 are equal to zero, the MQ^g is cleared and

the calculator proceeds directly to the next instruc-

tion in sequence. This is also true on the 7090 if the

mq fraction is zero.

2b. If the c (sr) 9 .35 are not equal to zero, the sum of

the characteristics in the sr and mq minus 128 is

placed in positions 1-8 of the ac* (Figure 25)

.

3. The c (sr) 9 .35 are multiplied by the c (mq) 9 .35 .

The 27 most significant digits of the 54-digit product

replace the c (ac) 9 .35 and the 27 least significant digits

replace the c (mq) 9 .35 . The sign of the ac is the al-

gebraic sign of the product.

4a. If the fraction in the ac is zero, the c(ac)
q> Pf^

are cleared, yielding a signed normal zero.

4b. If the position 9 of the ac contains a zero but

the fraction in the ac is not zero, the c (ac) 10 _35 and

Multiplicand to storage register

Check signs and set signs of product

Add char, of the MQ and SR

Subtract 200 from char, and place

in the accumulator register

Multiply SR fraction by MQ fraction

Put AC char. , minus 33,

in the MQ

Operation

Complete

=

Yes

Set accumulator

characteristic toO

Shift AC and MQ left

one place

I

Reduce AC char, by 1

Set MQ char, to AC char,

minus 33

Operation complete

Figure 25. fmp and ufm Flow Chart

the c (mq) 9 .35 are shifted left one position and the

characteristic in the ac is reduced by 1.

5a. If the ac contains a normal zero, positions 1-8

of the mq are cleared.

5b. If the ac does not contain a normal zero, the

c (mq) U8 are replaced by a characteristic which is 27

less than the characteristic in the ac (*)

.

6. The sign of the mq is replaced by the sign of the

AC

UFM— Unnormalized Floating Multiply

-0260 F T Y
11 12-1314 17 18-2021

Description. This instruction multiplies the float-

ing-point number at Y by the floating-point number

in the mq. The result is not normalized.

Indicators. Floating-point underflow and floating-

point overflow; floating-point trap.

Computer Instructions 29

Timing: 2-13 cycles, modification 1

Execution. The same procedure as fmp except that

the product is not normalized or zero tested.

Figure 25 shows a flow chart of the fmp and ufm
instructions.

FDH — Floating Divide or Halt

+0240

11 12-1314 17 18-2021

8. The fractional part of the dividend, which con-

sists of the c (ac) 9 _35 (and the c (mq) if the condition

of step 6 is met) , is divided by the fraction in the sr

and the quotient replaces the c (mq) 9 .35 .

9. The 27-bit remainder resulting from the division

in step 8 replaces the c (ac) 9 .35 .

10. The characteristic in the ac is reduced by 27*.

Note: Even though the numbers are not in nor-

malized form, the quotient will be normalized if the

ratio above holds. If the fraction in the ac is zero, a

normalized zero will result in the mq.

Description. The c (ac) are divided by the c (y) .

The quotient appears in the mq and the remainder

appears in the ac. If the magnitude of the ac fraction

is greater than or equal to twice that of the c (y). 9 _35 ,

or if the magnitude of the c (y) 9 .35 is zero, the divide

check indicator is turned on and the computer stops,

leaving the dividend in the ac unchanged and a nor-

mal zero in the c (mq) . The quotient is in normal
form if both the dividend and divisor are in that

form. If they are, the magnitude of the ratio of the

fraction in the ac to the fractional part of c (y) is less

than two but greater than one-half.

Indicators. Floating-point underflow, floating-point

overflow, divide check, and floating-point trap.

Timing: 3-13 cycles, modification 5

Execution

1. The c(y) are placed in the storage register.

2. The mq is cleared.

3. The sign of the mq is made equal to the alge-

braic sign of the quotient. The sign of the ac re-

mains unchanged throughout so that the signs of the

remainder and dividend always agree.

4. If the magnitude of the fraction in the ac is

greater than or equal to twice the magnitude of the

fraction in the sr, or if the fraction in the sr is zero,

the divide-check indicator and panel light are turned
on, the calculator stops and the dividend is left un-

changed in the ac.

5. If the fraction in the ac is zero, the c(ac)q>p>1 _35

are cleared and the remaining steps are skipped. If

s (ac) is minus, the sign is forced plus.

6. If the magnitude of the fraction in the ac is

greater than or equal to the magnitude of the fraction

in the sr, the ac is shifted right one position, and the

characteristic in the ac is increased by one.* The bit

in position 35 of the ac enters position 9 of the mq.

7. The characteristic of the ac minus the charac-

teristic of the sr plus 128 is placed in positions 1-8 of

the mq.*

FDP — Floating Divide or Proceed

+0241

Description. This instruction divides the floating-

point number stored in the ac by the floating-point

number located at Y.

Indicators. Floating-point underflow, floating-point

overflow, divide check, and floating-point trap.

Timing: 3-13 cycles, modification 5

Execution. The same procedure as fdh except that

if the computer cannot handle the problem, it does

not halt but proceeds to the next sequential instruc-

tion.

Floating-Point Trap

During the execution of floating-point instructions

the resultant characteristic in the ac and mq may ex-

ceed eight bit positions (result is too large for stor-

age) . The capacity is exceeded if the exponent goes

beyond +177 or below —200. Beyond +177 is termed

overflow while below —200 is termed underflow. Over-

flow and underflow may occur in either the ac or the

mq registers.

To aid the programmer in checking for these condi-

tions, a unique check called floating-point trap is used.

The computer will, upon sensing an underflow or

overflow, put the address plus one of the instruction

that caused the condition into the address portion of

location 0000.

An identifying code, telling whether an underflow

or an overflow occurred and whether the most signifi-

cant result is in the ac or mq, is placed in the decre-

ment portion of location 0000. The computer then

executes the instruction at location 0010 and proceeds

from there. These underflows and overflows are

termed spills. The decrement positions and meaning
of a 1-bit in these positions is:

30 ibm 7090

BIT

POS. MEANING

14. Divide only (mq register is not an extension

of the ac factor)

.

15. Overflow in either acc or mq, (or both)

registers.

16. ac factor exceeded.

17. mq fraction is excessive.

Shifting Operations

Shift instructions are used to move the contents of the

ac and/or the mq either to the right or the left of

their original positions. With the exception of the

rotate mq left instruction, zeros are automatically

introduced in the vacated positions of a register.

Thus, a shift larger than the bit capacity of the reg-

ister will cause the contents of the register to be re-

placed by zeros.

When a shift instruction is interpreted, the amount

of the shift is determined by bit positions 28-35 of the

instruction. This provides a maximum shift of 377

places. Any number larger than 377 is interpreted

as modulo 400. By modulo 400 is meant that, given

any shift count, the actual number of positions shifted

will be the remainder after dividing the shift count

by 400.

All shift instructions are subject to address modifica-

tion through indexing. Shifting a number in a reg-

ister is equivalent to multiplying or dividing it by a

power of 2 (as long as none of the significant bits is

lost)

.

In the following description of the shift instruc-

tions, the number of positions to be shifted is speci-

fied by "positions 28-35." With indexing, this shift

is modified by positions 10-17 of the specified index

register or registers.

ALS- Accumulator Left Shift

+ 0767 T Y

Description. This instruction causes the c(ac)
q> p> ^^

to be shifted left the number of places specified in

positions 28-35 of the address portion of the instruc-

tion. The sign position is unchanged.

Indicators. AG overflow.

Timing: 2-4 cycles, modification 7

Execution. If a non-zero bit is shifted into position

P from position 1, the ac overflow indicator is turned

on. Bits shifted past position Q are lost. Vacated posi-

tions are filled with zeros (Figure 26).

Instruction in storage register

s. -11 28-35

< ' i '

Instruction

decoded

Set address in

shift counter

ALS ^'*>v ARS

1 f

X

i '

Shift AC left

1 position

Shift AC
right 1 position

LLS
Inst.

LRS

Shift AC &MQ
left 1 position

MQltoAC35

Shift AC &MQ
right 1 position

AC35toMQl

Shii

Ctr.

7^0

r=o

Operation complete

Figure 26. ars, als, lls, and lrs Flow Chart

1

_LLS^

f

Inst,
N LRS

f

Set AC sign

toMQ sign

SetMQ sign

to AC sign

1
f

Operation complete

Computer Instructions 31

ARS — Accumulator Right Shift LGL- Logical Left Shift

+0771 Y zi -0763 fit Y

Description. The c (ac)
q> p> t _35 are shifted right the

number of places specified in positions 28-35 of the

address portion of the instruction. The sign position

is unchanged.

Indicators. None.

Timing: 2-4 cycles, modification 7

Execution. Bits shifted past position 35 of the ac-

cumulator are lost. Bits shifted from Q enter P and

bits from P enter position 1. Vacated positions are

filled with zeros (Figure 26).

LLS-Long Left Shift

+0763

17 18-20 21

Description. The c (ac)
q> p> ^^ and the c (mq) t _35

are treated as one register. The contents of these reg-

isters are shifted left the number of places specified in

positions 28-35 of the address portion of the instruc-

tion. The mq sign position is unchanged and the sign

of the ac is made to agree with it.

Indicators. AC overflow.

Timing: 2-7 cycles, modification 7

Execution. Bits enter position 35 of the ac from

position 1 of the mq. If a non-zero bit is shifted into

or through position P, the ac overflow indicator is

turned on. Bits shifted past position Q are lost. Posi-

tions vacated are filled with zeros (Figure 26)

.

LRS-Long Right Shift

+0765 ^ill§ll T Y
17 18-20 21

Description. The c (ac)
q> p> ^g- and the c (mq) x _ 35

are treated as one register. The contents of these reg-

isters are shifted right the number of places specified

in positions 28-35 of the address portion of the instruc-

tion. The ac sign is unchanged and the sign of the

mq is made to agree with it.

Indicators. None.

Timing: 2-7 cycles, modification 7

Execution. Bits enter position 1 of the mq from
position 35 of the ac. Bits shifted past position 35 of

the mq are lost. Vacated positions are filled with zeros

(Figure 26)

.

Figure 26 shows the flow chart for the ars, als, lls,

and lrs instructions.

Description. The c (ac)
q> p> 1-35 and the c (mq) s> 1 .35

are treated as one register. Their contents are shifted

left the number of places specified in positions 28-35

of the address portion of the instruction. The sign of

the ac is unchanged.

Indicators. AC overflow.

Timing: 2-7 cycles, modification 7

Execution. Bits enter position S of the mq from

position 1 of the mq. Bits from mq (s) then enter posi-

tion 35 of the accumulator. If a non-zero bit is shifted

into or through position P of the ac, the ac overflow

indicator is turned on. Bits are shifted from P to Q
and any bits shifted from Q are lost. Vacated posi-

tions are filled with zeros.

LGR- Logical Right Shift

|
-0765 ^^^^^^ T Y

Description. The c (ac)
q> p> ^^ and the c (mq) s> ^35

are treated as one register. Their contents are shifted

right the number of places specified in positions 28-

35 of the address portion of the instruction. The sign

of the ac is unchanged.

Indicators. None.

Timing: 2-7 cycles, modification 7

Execution. Bits enter position S of the mq from

position 35 of the ac. Bits enter mq 1 from mq (s) .

Bits shifted past position 35 of the mq are lost. Va-

cated positions are filled with zeros.

RQL - Rotate MQ Left

-0773 Y
17 18-20 21

Description. The c (mq) are shifted left the num-
ber of places specified by positions 28-35 of the ad-

dress portion of the instruction. The instruction

shifts position S into position 35, and thus the register

becomes a circular one.

Indicators. None.

Timing: 2-4 cycles, modification 7

Execution. Bits are rotated from position 1 of the

mq to position S, and from position S to position 35.

No bits are lost.

32 ibm 7090

Word Transmission Operations

The operations described in this section are con-

cerned with the movement of words or parts of words

from one core location or register to another.

LDQ-Load MQ

+0560 F T Y
11 12-1314 17 18-2021

Description. This instruction places the contents of

Y into the mq. The c (y) are unchanged.

Indicators. None.

Timing: 2 cycles

Indicators. None.

Timing: 2 cycles

Execution. See Figure 27.

STO - Store

+ 0601 F
^^^M T Y

11 12-1314 17 18-2021

Description. The c (ac) s> lm35 replace the c (y) . The
c (ac) are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 27.

STQ- Store MQ

-0600 F T Y
s,i ii 2-13 14 17 18-20 21 35

Description. This instruction places the contents of

the mq into the specified Y location. The c (mq) re-

main unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 27.

SLW- Store Logical Word

+ 0602 F im T Y
11 12-1314 17 18-2021

Description. The c(ac)P)1 _35 replace the c(y). The
c (ac) are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 27.

SLQ- Store Left Half MQ STP — Store Prefix

-0620 Y
11 12-1314 17 18-2021

Description. The c (mq) s> ^^ replace the c (y) s> x _.

The c (mq) and the c (y) 18 .35 are unchanged.

+0630 F T Y
11 12-1314 17 18-2021

Description. The c (ac)
p> lt 2 replace the c (y) B) lt 2 .

The c (y) 3 _35 and the c (ac) are unchanged.

SLW STP STD

AC(P,l-35)

to 58(5, 1-35)

Store

S,l,2

only

SXD

V V

SLQ

Tagged XR
to SB(3-17)

Store

3-17

only

STQ

MQ(S,l-35)
toSB(S,l-35)

Store

S,l-17
only

STZ

Zeros to SB

(S,l-35)

Store full word
S,l-35

M

Figure 27. Data Flow Chart for Store Instructions

STI STO

Sl(0-35)

to 56(5,1-35)

STT

w w

AC(S,l-35)

toSB(S,l-35)

STA SXA STL

Tagged XR
to SB(21-35)

Store

18-20

only

Hi,'

Store

21-35

only

ICto

SB(21-35)

Trap and

set the IC

to 0002

Computer Instructions 33

Indicators. None.

Timing: 2 cycles

Execution. See Figure 27.

STD — Store Decrement

+0622 F im T Y
s,i ii 2-1314 17 18-2021 35

Description. The c (ac) 3 _17 replace the c (y) 3 _17 . The
c (Y) s, i, 2, 18-35 and the c (ac) are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 27.

STT — Store Tag

+ 0625 F ^§§§
T Y

s,i ii 2-13 14 17 18-20 21 35

Description. The c (ac) 18 .20 replace the c (y) 18 .20 .

The c (y) s> 1 .
17f 21 .35 and the c (ac) remain unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 27.

STA — Store Address

+0621

11 12-1314 17 18-2021

Description. The c (ac) 21 _35 replace the c (y) 21 _35 .

The c (y) s> x _ 20 and the c (ac) are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 27.

STL — Store Instruction Location Counter

-0625

11 12-1314 17 18-2021

Description. The location of the stl instruction

plus 1 replaces the c (y) 21 _ 35 . The c (y) s> x _ 2Q are un-

changed.

Indicators. None.

Timing: 2 cycles

Execution. Instruction counter contents to address

switches. Address switches to the storage register bus.

Storage register (21-35) to storage. See Figure 27.

STR — Store Location and Trap

Description. The location of the str instruction,

plus one, replaces positions 21-35 of location 0000.

The computer then takes its next instruction from
location 0002. The contents of positions 3-35 of this

instruction are not interpreted by the computer.

Indicators. None.

Timing: 2 cycles

Execution.

Note: Conflicts may arise when the computer is op-

erated in the trapping mode. This instruction, trans-

fers in the trap mode, and floating-point trap, all use

location 0000. See Figure 27.

STZ — Store Zero

+ 0600 F ill T Y
11 12-1314 17 18-2021

Description. The c (y) lm35 are replaced by zeros and
the c (y) s are made plus.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 27.

XCA — Exchange AC and MQ

+0131 ^
Description. The c (ac) s> x .35 are exchanged with

the c(mq)s1 _35 . Positions P and Q of the ac are

cleared.

Indicators. None.

Timing: 1 cycle

Execution. See Figure 28.

XCL — Exchange Logical AC and MQ

-0130 HI

Description. The c (ac)
p> l^ are exchanged with

the c (mq) s> ^35. Positions S and Q of the ac are

cleared.

Indicators. None.

34 ibm 7090

Timing: 1 cycle

Execution. See Figure 28.

ENK- Enter Keys

+0760

s#i 17 18*20 21-22 23 35

Description. This instruction places the contents of

36 panel input switches into the c (mq) . When a

panel input switch is down it represents a 1; when it

is up, it represents a zero.

Indicators. None.

Timing: 2 cycles

Execution. Since the address part of this instruc-

tion contains part of the operation code for this in-

struction, any address modification by an index regis-

ter may result in the changing of the operation itself.

Control Instructions

Instructions which govern the flow of a program, and

in particular those which cause an alteration in the

computer's normal process of taking its instructions

from sequential locations, are called control instruc-

tions.

Unconditional transfer instructions specify the lo-

cation "Y" from which the computer is to take the

next instruction. Conditional transfer instructions also

specify a location Y. However, whether the computer

takes its next instruction from Y or the next sequen-

tial location depends upon the outcome of a test. This

test is specified by the operation code of the instruc-

tion.

Test instructions are similar to conditional control

instructions in that they cause some test to be per-

formed. Unlike conditional instructions, however, test

instructions do not specify a location Y to which con-

trol may be transferred. Instead, the alternative loca-

tion to which control may be transferred is fixed rela-

tive to the location of the test instruction.

NOP — No Operation

+Q761 ^ ^
Description. This instruction causes the computer

to take the next instruction in sequence.

Indicators. None.

Timing: 2 cycles

HPR-Halt and Proceed

+0420 H ^
Description. This instruction causes the computer

to halt. The ic contains the location of the next se-

Decode the instruction

CfMQ) to the storage

register

XCA
I

Inst.

SR(l-35) to

adders

SR sign to

AC sign

AC(S,l-35) to

storage reg

XCL

SR(S,l-35) to

adders

AC(PJ-35) to

SR(S,l-35)

Set AC sign

to plus

Adders (Q-35)

to AC

SR(S /
1-35) to

MQ(S,l-35)

Figure 28. xca and xcl Flow Chart

Computer Instructions 35

quential instruction. When the start key on the op-

erator's console is depressed, the computer proceeds

and executes the next sequential instruction.

Indicators. None.

Timing: 2 cycles

Timing: 1 cycle

Execution. See Figure 29.

ETM — Enter Trapping Mode

HTR- Halt and Transfer

+0000 F T Y
11 12-1314 17 18-2021

Description. This instruction causes the computer
to halt. The ic contains the location of the htr in-

struction. Depression of the start key, on the opera-

tor's console, causes the computer to transfer to loca-

tion Y and execute that instruction.

Indicators. Trap Mode.

Timing: 2 cycles

XEC - Execute

+ 0522 F T Y
S,1 n 2-13 14 17 18-20 21 35

Description. This instruction causes the computer
to perform or "execute" the instruction at location Y.

Indicators. None.

Timing: 1 cycle

Execution. Since the location counter is not altered

(when Y contains any instruction other than a suc-

cessful transfer or test instruction) , the program ad-

vances to the next sequential instruction following the

execute instruction after performing the instruction

at location Y. If location Y contains a transfer in-

struction, it will be executed and program control will

be altered from the sequential process. If location

Y contains a test instruction, the instruction following

execute will be located relative to the execute rather

than the test instruction. Thus, any instruction which
changes the instruction counter (str, tra, dct, etc.)

will alter program control when that instruction is

executed by xec.

TRA — Transfer

+0020
11 12-1314 17 18-2021

Description. This instruction causes the computer
to take its next instruction from location Y and pro-

ceed from there.

Indicators. Trap Mode.

Description. This instruction causes the computer
to enter the transfer trapping mode. The transfer

trapping indicator on the operator's console is turned

on.

Indicators. Trap Mode.

Timing: 2 cycles

Execution. When the computer is in the trapping

mode and any transfer instruction except a ttr is

executed, the location of the transfer instruction re-

places the address part of location 0000 whether the

condition for transferring is met or not. If the trans-

fer condition is met, the computer takes its next in-

struction from location 0001 and proceeds from there.

Only instructions which have "transfer" in their title

are affected by the transfer trapping mode. Address

TRA in Trap Mode TSX

Instruction in the SR Instruction in the SR

1 1
Block Address Portion

to Address Switch (AS)

SB (18-20) to

Tag Register

i f I
AS Set to 00000 and Sent

to Address Register (AR)
SR (18-35) to

Adders (P-17)

1 \ '

Instruction Counter (IC)

to AS and AS to SR (21-35)

Adders to AS and

AS to AR

1 1

AR to IC (00000 in IC) IC to AS

i *
Block Storage Bus (SB)

toSR AS to SR (21-35)

1 I

SR to SB and Advance

IC to 00001 SR (21-35) to Adder (P-17)

I

Adder (3-17) to XR and

1 to Adder 17

i

XR to Adders and

Adders to XR

y
'

AR to IC

Figure 29. tra, tsx, and Trap Mode Flow Chart

36 ibm 7090

modification may change the operation, since posi-

tions 23-35 of the instruction are a part of the opera-

tion code.

LTM — Leave Trapping Mode

-0760
s,i 17 18-20 21-22 23

Description. This instruction turns off the trap

mode indicator and causes the computer to leave the

transfer trapping mode. Transfer instructions, there-

fore, will not be trapped again until an etm opera-

tion is executed.

Indicators. Trap Mode.

Timing: 2 cycles

Execution. The computer operates in the trapping

mode until either a leave trapping mode operation

is executed or the clear or reset key on the operator's

console is depressed. Since positions 23-35 represent

part of the operation code of this instruction, any

modification by an index register may result in the

changing of the operation itself. See Figure 29.

not. This makes it possible to have an unconditional

transfer in the transfer trapping mode.

Indicators. None.

Timing: 1 cycle

TZE — Transfer on Zero

+ 0100 F T Y
11 12-1314 17 18-2021

Description. If the c(ac)q>p>1 _35 are zero, the com-

puter takes its next instruction from location Y and

proceeds from there. If they are not zero, the next

sequential instruction is taken.

Indicators. Trap mode.

Timing: 2 cycles

Execution. See Figure 30.

TNZ — Transfer on No Zero

-0100 F ii
^

T Y
S,l ii 2-1314 17 18-20 21 35

TTR — Trap Transfer

+ 0021
11 12-1314 17 18-2021

Description. This instruction causes the computer to

take its next instruction from location Y and to pro-

ceed from there whether in the transfer trap mode or

Description. If the c(ac)q
>p>1 _35 are not zero, the

computer takes its next instruction from location Y
and proceeds from there. If they are zero, the next

sequential instruction is taken.

Indicators. Trap mode.

Timing: 2 cycles

Execution. See Figure 30.

Decode the instruction

7
Address switch to

address register

TNZ, TZE

Comp. AC to adders

adder Q carry to

adder position-35

TNZ TMI

TPL,TMI

Transfer

Execute the next

sequential instruction

Figure 30. tnz, tze, tpl, and tmi Flow Chart

Minus

Computer Instructions 37

TPL — Transfer on Plus

+ 0120 Y
11 12-1314 17 18-2021

J
Description. If the sign position of the ac is posi-

tive, the computer takes its next instruction from loca-

tion Y and proceeds from there. If the sign position

is negative, the computer takes the next sequential

instruction.

Indicators. Trap mode.

Timing: 1 cycle

Execution. See Figure 30.

TMI — Transfer on Minus

-0120 Y

Description. If the sign position of the ac is nega-

tive, the computer takes its next instruction from loca-

tion Y and proceeds from there. If the sign position

is positive, the computer takes the next sequential

instruction.

Indicators. Trap mode.

Timing: 1 cycle

Execution. See Figure 30.

TOV — Transfer on Overflow

+0140
sj

Description. If the ac overflow indicator is on, it

is turned off and the computer takes its next instruc-

tion from location Y. If the indicator is off, the com-
puter takes the next sequential instruction.

Indicators, ac overflow, trap mode.

Timing: 1 cycle

Execution. See Figure 31.

TNO — Transfer on No Overflow

-0140
sX~ 11 12-1314 17 18-2021

J
Description. If the ac overflow indicator is off, the

computer takes its next instruction from location Y.

If the indicator is on, it is turned off and the com-
puter takes the next sequential instruction.

Address switch to

address register

TNO, TOV

TNO

TQP

Transfer

TOV

MQsign?;

plus

Transfer

Execute next sequential

instruction

Figure 31. tov, tno, and tqo Flow Chart

Indicators, ac overflow, trap mode.

Timing: 1 cycle

Execution. See Figure 31.

TQP - Transfer on MQ Plus

+0162
11 12-1314 17 18-2021

Description. If the sign position of the mq is plus,

the computer takes its next instruction from location

Y. If the sign position is negative, the computer takes

the next sequential instruction.

Indicators. Trap mode.

Timing: 1 cycle

Execution. See Figure 31.

TQO — Transfer on MQ Overflow

+ 0161 F 1 T Y
s,i ii 2-13 14 17 18-20 21 35

Description. This instruction is a conditional trans-

fer when the computer is operating in the 704 floating-

point mode. If the mq overflow indicator is on, the

computer takes its next instruction from location Y
and turns the indicator off.

Indicators, mq overflow.

Timing: 1 cycle

Execution. If this instruction is executed while the

computer is in the normal mode, it is treated as a

1 cycle no-operation whether the mq overflow indi-

cator is on or not.

38 ibm 7090

TLQ — Transfer on Low MQ TXI — Transfer with Index Incremented

+0040

Description. If the c(mq) are algebraically less than

the c(ac), the computer takes its next instruction from

location Y. If the c(mq) are algebraically greater than

or equal to the c(ac), the computer takes the next

sequential instruction. Note: a plus zero is algebra-

ically greater than a minus zero.

Indicators. Trap mode.

Timing: 2 cycles

Execution. See Figure 32.

+1 D T Y
S.I -2 3 17 18-20 21 35

Description. This instruction adds the decrement

(D) to the contents of the specified index register

(T) and replaces the contents of the index register

with the resulting sum. The computer then takes its

next instruction from location Y.

Indicators. Trap mode.

Timing: 2 cycles

Execution. See Figure 33.

TXH — Transfer on Index High

TSX — Transfer and Set Index

+0074

Description. This instruction places the 2's com-

plement of the core address of the tsx(ic) in the

specified index register (T) . The computer takes its

next instruction from location Y. Note: Subtracting

the 2's complement of a number is equivalent to add-

ing the number.

Indicators. Trap mode.

Timing: 2 cycles

Execution. See Figure 29.

Address switch to

address register

MQ(S-35) to the

adders and comp
accumulator to

the adders
n=

Q carry to

adder 35

Transfer

plus

Execute the next

sequential instruction

+3 D T Y
5,1-2 3 17 18-20 24 35

Description. If the number in the specified index

register (T) is greater than the decrement (D), the

computer takes its next instruction from location Y.

If the number in the specified index register is less

than or equal to D, the computer takes the next

sequential instruction.

Indicators. Trap mode.

Timing: 2 cycles

Execution. See Figure 34.

Storage input bus (18-20)

to tag register

i

Address switch to

address register

*

C(XR) to adders

Adder (3-17) to

index register

'

r

SR(S,l-35)to

adders (P-35)

*

C(XR) to adders

If

Adder (3-17) to

index register

'

Address register to

instruction counter

Figure 32. tlq Flow Chart Figure 33. txi Flow Chart

Computer Instructions 39

Storage input bus (18-20)

to tag register

Address switch to

address register

Comp of XR to

adder (3-17) and
SR(3- 17) to adders.

Carry to adder 17.

No Adder 3^

sCarry?

Yes

Other

Difference to

index register

Recomplement

index register.

Carry to adder 17.

Inst.

TXH, TIX, TNX, TXL
Inst,

TNX

r

'

1

TXL
Transfer

Controls

1

Do ne>

instr

t sequential

uction

TIX

TXH

Figure 34. tix, txh, tnx, and txl Flow Chart

TXL — Transfer on Index Low or Equal

Description. If the contents of the index register

specified by T are less than or equal to the D portion,

the computer takes its next instruction from location

Y. If the contents of T are greater than D, the com-

puter takes the next sequential instruction.

Indicators. Trap mode.

Timing: 2 cycles

Execution. See Figure 34.

TIX — Transfer on Index

+2 T
17 18-20 21

Y

Description. If the c(xr) specified by T are greater

than the c(d), the number in the index register is re-

duced by D and the computer takes its next instruc-

tion from Y. If c(t) is less than or equal to D, the

c(t) are unchanged and the computer takes the next

sequential instruction.

Indicators. Trap mode.

Timing: 2 cycles

Execution. See Figure 34.

TNX — Transfer on No Index

Description. If the c(xr) specified by T are equal to
or less than D, the c(t) are unchanged and the com-
puter takes its next instruction from Y. If c(t) are
greater than D, the c(t) are reduced by D and the
computer takes the next sequential instruction.

Indicators. Trap mode.

Timing: 2 cycles

Execution. See Figure 34.

PSE-Plus Sense

+0760

s,i 17 18-20 21-22 23

Description. This instruction provides a means of
testing the status of the sense switches and of turning
on or off the sense lights on the operator's console.
The instruction also permits the transmission of an
impulse to or from the exit or entry hubs on the
printer or card punch control panels. Address modifi-
cation may cause the operation code to be changed.

Indicators. Sense indicators and switches.

Timing: 2 cycles

Execution. The address part (23-35) of this in-

struction determines whether a light, switch, printer,
or card punch is being sensed. Further, it determines
which light, switch, or hub is sensed. The octal ad-
dresses for sense instructions are:

0140

SLN
0141- 0144

SWT
0161- 0166

Turns off all sense lights on the operator's
console.

Turn on sense lights 1, 2, 3 or 4, respectively,
on the console.

Test sense switches on the console. If the
corresponding switch is down (on), the com-
puter skips the next instruction and proceeds
from there. If the sense switch is up (off),

the computer takes the next sequential in-
struction.

40 ibm 7090

1341

2341
3341

4341

5341

6341

7341

10341

SPU
1342(A)
2342 (B)

3342 (C)

4342 (D)

5342 (E)

6342 (F)

7342 (G)

•10342(H)

SPT

1360(A)
2360 (B)

3360 (C)

4360 (D)

5360 (E)

6360 (F)

7360 (G)

10360(H)

1361

2361

3361

4361

5361

6361

7361

10361

SPR

1372(A)
2372(B)

• 3372(C)
• 4372 (D)

5372 (E)
• 6372(F)
7372 (G)

-10372(H)

An impulse will appear at the specified exit

hub of the card punch control panel attached

to appropriate data channel. Hubs are num-
bered 1 and 2.

If an impulse is present at the sense entry

hub of the printer control panel, the com-
puter skips the next instruction and pro-

ceeds from there. If no impulse is present,

the computer takes the next sequential in-

struction.

The computer causes an impulse to appear

at the specified hub on the control panel of

the printer attached to that particular data

channel.

MSE — Minus Sense

-0760

17 18-20 21-22 23

Description. This instruction provides a means of

testing the status of the sense lights on the operator's

console. The lights may be turned on by a pse instruc-

tion with an address of 0141 to 0144. Address modifi-

cation may cause the operation code to be changed.

Indicators. Sense lights.

Timing: 2 cycles

Execution. The addresses of the four sense lights arc

0141 to 0144. If the corresponding sense light is on,

the light is turned off and the computer skips the next

instruction and proceeds from there. If the light is

off, the computer executes the next sequential in-

struction.

BTT — Beginning of Tape Test

-K)760

s, i 17 18-20 21-22 23

Description. This instruction is used to test the

status of data channel beginning-of-tape indicators.

The channel whose indicator is to be tested is speci-

fied by the address portion (Y) of the btt instruction.

Address modification may cause the operation code to

be changed. The addresses for the channels are:

Data channel A 1000
Data channel B 2000
Data channel C 3000
Data channel D 4000
Data channel E 5000
Data channel F 6000
Data channel G 7000
Data channel H 10000

Indicators. All beginning-of-tape indicators.

Timing: 2 cycles

Execution. If the beginning-of-tape indicator for

data channel Y is on, the computer takes the next

sequential instruction, and the indicator is turned off.

If the beginning-of-tape indicator is off, the computer

skips the next instruction and proceeds from there.

The beginning-of-tape indicator is turned on by a

backspace record or backspace file instruction given to

a tape unit that is positioned at its load point. See

Figure 35.

ETT — End of Tape Test

-0760

17 18-20 21-22 23

Description. This instruction is used to test the

status of data channel end-of-tape indicators. The
channel whose indicator is to be tested is specified by

the address portion of the ett instruction. The ad-

dressing system is the same as specified for the btt

instruction. Address modification may cause the oper-

ation code to be changed.

Indicators. End-of-tape indicators.

Timing: 2 cycles

Execution. If the end-of-tape indicator for data

channel Y is on, the computer takes the next sequen-

tial instruction and turns the indicator off. If the

BTT instruction ETT instruction

Channel address

^ f v

BTT and channel

addresses

ETT and channel

addresses

No

Yes

Skip—advance

the instruction

BTT ETT

Turn off the

BOT indicator

Turn off the

EOT indicator

Figure 35. btt and ett Flow Chart

Computer Instructions 41

indicator is off, the computer skips the next instruc-

tion and proceeds from there. The end-of-tape indi-

cator is turned on when either a write select or a write

end of file causes the end-of-tape marker to be passed

over. See Figure 35.

IOT- Input-Output Check Test

PBT

+0760 T 5
S/l 17 18-20 21-22 23

Description. If the i-o check indicator is on, the

indicator is turned off and the computer takes the

next sequential instruction. If the indicator is off, the

computer skips the next instruction and proceeds

from there. Any address modification may result in

the changing of the operation itself.

Indicators, i-o check.

Timing: 2 cycles

Execution. The i-o check indicator will be turned

on by any of the following conditions:

1. If a write crt or drum select instruction is exe-

cuted and the computer is not in the select trap mode.

2. If COPY, COPY AND ADD LOGICAL, Or LOCATE DRUM
address are executed when the computer is not in the

copy trap mode.

3. If a RESET AND LOAD CHANNEL Or a LOAD CHAN-
NEL is executed and the specified channel is not se-

lected.

4. If, when writing, a channel data register has not

been loaded with a word from storage by the time its

contents are to be sent to the output unit.

5. If, when reading, a channel data register has not

stored its contents by the time new data are to be

sent from an input unit.

Advance instruction

counter to skip the

next sequential
instruction

Figure 36. pbt, lbt, and dct Flow Chart

LBT — Low-Order Bit Test

+0760

s, i 17 18-20 21-22 23

Description. If the c(ac) 35 is a 1, the computer skips

the next instruction and proceeds from there. If 35

is a 0, the computer takes the next sequential instruc-

tion. Address modification may result in the changing

of the instruction.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 36.

DCT — Divide Check Test

PBT -P-Bit Test

-0760

17 18-20 21-22 23

Description. If the c (ac) P is a 1, the computer skips

the next instruction and proceeds from there. If P
contains a 0, the computer takes the next sequential

instruction. Address modification may result in the

changing of the instruction itself.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 36.

+0760 12

17 18-20 21-22 23

Description. If the indicator is on, it is turned off

and the computer takes the next sequential instruc-

tion. If the indicator is off, the computer skips the

next instruction and proceeds from there. Address

modification may result in the changing of the in-

struction itself.

Indicators. Divide check.

Timing: 2 cycles

Execution. See Figure 36.

42 ibm 7090

ZET — Storage Zero Test

+0520 Y
11 12-1314 17 18-20 21

Description. If the c(y)
1 .35 are 0, the computer skips

the next instruction and proceeds from there. If the

c
(
Y)i-35 are not zero, the computer takes the next

sequential instruction. The c(y) are not changed.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 37.

NZT — Storage not Zero Test

-0520 F T Y

Description. If the c(y) 1 .35 are not 0, the computer

skips the next instruction and proceeds from there. If

the c(y)
1 .35 are 0, the computer takes the next sequen-

tial instruction. The c(y) are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 37.

CAS — Compare Accumulator with Storage

+0340 F T Y
s,i ii 2-13 14 17 18-20 21 35

Description. If the c(ac) are algebraically greater

than the c(y), the computer takes the next sequential

instruction. If the c(ac) are algebraically equal to the

c(y), the computer skips the next instruction and pro-

ceeds from there. If the c(ac) are algebraically less

NZT ZET

=

\SR(l-35)^
/o =

<SR(l-35)
^o

> f

Advance instruction

counter to skip next

sequential instruction

)
f

Do next sequential
- >-^

instruction

than the c(y) the computer skips the next two instruc-

tions and proceeds from there.

Indicators. None.

Timing: 3 cycles

Execution. Note: Two numbers are considered

algebraically equal if the magnitudes and signs of

both are equal. A plus zero is algebraically greater

than a minus zero.

LAS — Logical Compare Accumulator with Storage

-0340 F T Y
11 12-1314 17 18-2021

Description. The c(Ac) QfPfl _35 are treated as an un-

signed 37-bit number and are compared with the

c
(
Y)s,i-35 which are treated as an unsigned 36-bit

quantity. If the c(ac) Q)P>1 _35 are greater than the c(y),

the computer takes the next sequential instruction. Ii

the c(ac)qp1 _35 are equal to the c(y), the computer

skips the next instruction and proceeds from there. If

the c(ac)qjPj1 _ 35 are less than the c(y), the computer

skips the next two instructions and proceeds from

there.

Indicators. None.

Timing: 3 cycles

For the following control operations that refer to

data channels, the description of the operation is given

for channel A. For the other channels, the operation

code and the title are given.

TCOA — Transfer on Channel A in Operation

+0060 F T Y

Description. If channel A is in operation, the com-

puter takes its next instruction from location Y. If

the channel is not in operation, the computer takes

the next sequential instruction, and the operation of

the channel is not affected. The channel is in opera-

tion as long as a select register contains information.

Indicators. Trap.

Timing: 2 cycles

Figure 37. nzt and zet Flow Chart

STRUcrior<l CODE NAME
TCOB +0061 Transfer on Channel B in Operation

TCOC +0062 Transfer on Channel C in Operation

TCOD +0063 Transfer on Channel D in Operation

TCOE +0064 Transfer on Channel E in Operation

TCOF +0065 Transfer on Channel F in Operation

TCOG +0066 Transfer on Channel G in Operation

TCOH +0067 Transfer on Channel H in Operation

Computer Instructions 43

TCNA — Transfer on Channel A not in Operation

-0060 F
llli T Y

Description. If channel A is not in operation, the

computer takes its next instruction from location Y.

If the channel is in operation, the computer takes

the next sequential instruction, and the operation of

the channel is not affected.

Indicators. Trap.

Timing. 2 cycles.

STRUCTION CODE NAME
TCNB -0061 Transfer on Channel
TCNC -0062 Transfer on Channel

TCND -0063 Transfer on Channel

TCNE -0064 Transfer on Channel

TCNF -0065 Transfer on Channel

TCNG -0066 Transfer on Channel
TCNH -0067 Transfer on Channel

B not in Operation

C not in Operation

D not in Operation

E not in Operation

F not in Operation

G not in Operation

H not in Operation

TRCA — Transfer on Channel A Redundancy Check

+0022 F T Y
s,i n 2-13 14 17 18-20 21 35

Description. If the tape check indicator for channel

A is on, it is turned off and the computer takes its

next instruction from location Y. If the indicator is

off, the next sequential instruction is taken.

Indicators. Tape Check, Trap.

Timing: 2 cycles.

INSTRUCTION CODE NAME
TRCB -0022 Transfer on Channel B Redundancy Check
TRCC +0024 Transfer on Channel C Redundancy Check
TRCD -0024 Transfer on Channel D Redundancy Check
TRCE +0026 Transfer on Channel E Redundancy Check
TRCF -0026 Transfer on Channel F Redundancy Check
TRCG +0027 Transfer on Channel G Redundancy Check
TRCH -0027 Transfer on Channel H Redundancy Check

TEFA — Transfer on Channel A End of File

+0030 F
fi^i

^i T Y
S,l 11 2-13U 17 18-20 21 35

Description. If the end-of-file indicator for channel

A is on, it is turned off and the computer takes its

next instruction from location Y. If the indicator is

off, the computer takes the next sequential instruc-

tion.

Indicators. End-of-file, Trap.

Timing: 2 cycles.

INSTRUCTION CODE NAME
TEFB -0030 Transfer on Channel B End of File

TEFC +0031 Transfer on Channel C End of File

TEFD -0031 Transfer on Channel D End of File

TEFE +0032 Transfer on Channel E End of File

TEFF -0032 Transfer on Channel F End of File

TEFG +0033 Transfer on Channel G End of File

TEFH -0033 Transfer on Channel H End of File

TCH — Transfer in Channel

Description. This command is the transfer com-

mand for all data channels.

Indicators. None.

Timing: 2 cycles

Execution. When a tch command is executed, the

data channel proceeds immediately to its next com-

mand which is taken from location Y. The location

register is set to Y + 1. The command located at Y is

then loaded into the data channel.

Index Transmission Operations

This section of operations deals with the loading and

storing of the contents of index registers.

The operations always involve one or more index

registers and either the address or decrement field of

some location in storage or the accumulator register.

The following 15-bit fields may serve as one of the

agents in an index transmission operation: the ad-

dress or decrement of the accumulator, the address or

decrement of any location in storage, or the address

part of the index transmission instruction itself. In

addition, the number to be loaded may be placed in

the specified index register in either true or comple-

ment form.

Single registers or any combination of index regis-

ters may be specified. If more than one register is

specified in an unloading operation, their contents

are "oR'ed" together to produce the effective number.

OR'ing matches the registers position-for-position. If

there is a bit in either or both of the registers, the

result is a bit. For example:

xra 101100

xrb 011000

Result 111100

44 ibm 7090

If more than one index register is specified in a load-

ing operation, the data are loaded into all registers

specified.

LXA — Load Index from Address

LXD — Load Index from Decrement

-0534 T Y

+0534

Description. The c(y) 21 _35 replace the contents of

the specified index register. The c(y) are unchanged

Indicators. None.

Timing: 2 cycles.

Execution. See Figure 38.

LAC — Load Complement of Address in Index

Description. The c(y) 3 .17 replace the contents of the

specified index register. The c(y) are unchanged.

Indicators. None.

Timing: 2 cycles.

Execution. See Figure 38.

LDC — Load Complement of Decrement in Index

-0535 ! T Y
17 1820 21

+0535 MB T Y
17 18-20 21

Description. The 2's complement of the c(y) 21 _35 re-

places the contents of the specified index register. The
c(y) are unchanged.

Indicators. None.

Timing: 2 cycles.

Execution. See Figure 38.

Description. The 2's complement of the c(y) 3 .17 re-

places the contents of the specified index register. The

c(y) are unchanged.

Indicators. None.

Timing: 2 cycles.

Execution. See Figure 38.

AXT — Address to Index True

+0774 ^^^^^^ T Y

Description. Positions 21-35 of this instruction re-

place the contents of the specified index register. The

SB (18-20) to

tag register

instruction is unchanged.

Indicators. None.

LXA, LAC A LXD,LDC

Timing: 1 cycle

Execution. See Figure 39.
v. insr. ^

1
'

\
'

SB (18-20) to

tag registerSR (21-35) to

adder (P-17)

I

SR (S, 1-35) to

adder (P-35)
\ '

i

1

SR (21-35) to

adders (3-17)
Adder (3-17) to

index registei 1

r

Adder (3-17) to

index register

Index register to

adders with carry

to adder 17

1

Index register to

adders with a carry

to adder 17

<„V\ LAC - LDC

^. \ AXC

LXA

s'

1

r_

>v insr. >s

AXT
'

LXD Adder (3-17) to

index register

'

Adder (3-17) to

index register

1-i
f

Next instruction
*

Kl
5ITUCT on

Figure 38. lxa, lac, lxd, and ldc Flow Chart Figure 39. axt and axc Flow Chart

Computer Instructions 45

AXC — Address to Index Complemented

-0774 B^ 1
Description. The 2's complement of positions 21-35

of this instruction replaces the contents of the speci-

fied index register. The instruction is unchanged.

Indicators. None.

Timing: 1 cycle

Execution. See Figure 39.

PAX — Place Address in Index

Indicators. None.

Timing: 1 cycle

Execution. See Figure 40.

PDX — Place Decrement in Index

Description. The c(ac) 3 . 17 replace the contents of

the specified index register. The c(ac) are unchanged.

Indicators. None.

Timing: 1 cycle

Execution. See Figure 40.

Description. The c(ac) 21 _35 replace the contents of

the specified index register. The c(ac) are unchanged.

Indicators. None.

Timing: 1 cycle

Execution. See Figure 40.

PAC — Place Complement of Address in Index

Description. The 2's complement of the c(ac) 21 .35

replaces the contents of the specified index register.

The c(ac) are unchanged.

SB (18-20) to

tag register

1

AC (SJ-35) to

storage register

^AX, PAC <^)X, PDC

'
'

1
SR (-18-35) to

adder (P-17)

SR (1-35) to

adder (1-35)

1 l

*

Adder (3-17) to

index register

v>^-
^C, PDC

PAa
PDX

\x^ Index register to adders

with a carry to adder 17

'

f

Adder (3-17) to index
register

t

Next instruction

PDC — Place Complement of Decrement in Index

Description. The 2's complement of the c(ac) 3 .17

replaces the contents of the specified index register.

The c(ag) are unchanged.

Indicators. None.

Timing: 1 cycle

Execution. See Figure 40.

SXA — Store Index in Address

+0634 ZJ
Description. The c(y) 21 _35 are replaced by the con-

tents of the specified index register. The c(y)s>1 .20 are

unchanged. With a tag of 0, c(y) 21_35 are replaced with
zeros.

Indicators. None.

Timing: 2 cycles.

Execution. See Figure 41.

SXD — Store Index in Decrement

-0634
s, i

Figure 40. pax, pac, pdx, and pdc Flow Chart

Description. The c(y) 3 .17 are replaced by the con-

tents of the specified index register. The c(y)s 1>2 18 .35

are unchanged. With a tag of 0, decrement is re-

placed with zeros.

46 ibm 7090

Adder (P-35) to

Stg. reg. (S- 35)

Adder (3-17) to

index register

Stg. register

(3- 1 7) to storage

Storage input bus (18-20)

to tag register

Index register to adders

Adder (3-17) to index reg

and index reg to adder

(3-17)

SXD
Inst.

Figure 41. sxa and sxd Flow Chart

SXA

Adder (3- 17) toadd.sw.

and add.sw. to stg. reg.

(21-35)

Adder (3-17) to

index register

Storage register (21-35)
to storage

SB (18-20) to

tag register

XR to adders and adders

(3-17) back to XR

AS to SR (21-35) and

SR (S-35) to adder (P-35)

Adder (Q-35) to AC

Figure 42. pxd and pxa Flow Chart

Indicators. None.

Timing: 2 cycles.

Execution. See Figure 41.

PXA — Place Index in Address

17 18-20 21

Description. The entire accumulator is cleared and
the contents of the specified index register are placed

in the address part of the ac21 _35 . With a tag of the

c (ac) are set to zeros, xr is unchanged.

Indicators. None.

Timing: 1 cycle.

Execution. See Figure 42.

PXD— Place Index in Decrement

17 18-20 21

Description. The entire accumulator is cleared and

the contents of the specified index register are placed

in the decrement part of the ac3 .17 . With a tag of 0,

the c (ac) are set to zeros, xr is unchanged.

Indicators. None.

Timing: 1 cycle.

Execution. See Figure 42.

Logical Operations

Logical instructions operate on a 36-bit word. The
sign position is simply another bit position. The ex-

ception to this is when the P position is used instead

of the sign position. Logical instructions are fre-

quently used in a process called masking. This is the

process of extracting one or more small parts of a

word from the whole word.

The and and or concept is used with logical opera-

tions. When two numbers are combined by an and,

they are matched bit-for-bit. If the same position in

each word contains a 1, the result is a 1. If in one

word the position is and in the other word it is a 1,

the result is a 0. If the same position in both words is

a zero, the result is a 0. The following is an example

of a logical and operation:

101101011011
101001001101

101001001001 Resulting and

An or function (sometimes called "inclusive or")

also matches two numbers bit-for-bit. The difference,

however, when compared with an and, is: (1) if the

same position in either word contains a 1, the result is

a 1; (2) if the same position in both words is a 1, the

result is again a 1; (3) only if the same position in

both words is a 0, is the resulting position a 0. For

example:

011010110101
001100100100

011110110101 Resulting inclusive or

Computer Instructions 47

One other function of the logical operations is an

exclusive or. In this operation, only those positions

which do not match result in a 1. If the same position

in each word is a zero or if the same position in each

word is a 1, the result is a zero. If the same position

in one word is a 1 and in the other a 0, then the

result is a 1. For example:

101101100101
001011001101

100110101000 Resulting exclusive or

ORA — OR to Accumulator

-0501 F T Y

Description. Each bit of the c(y) S)1 _35 is matched
with the corresponding bit of the c(ac)p}1 _ 35 . c(y)s is

matched with c(ac)p .

Timing: 2 cycles

Execution. When the corresponding bit of either the

ac or location Y (or both) is a 1, a 1 replaces the

contents of that position in location Y. When the

corresponding bits of both the ac and location Y are

0's, a replaces the contents of that position in loca-

tion Y. The c(ac) are unchanged. See Figure 44.

AC(P-35)to

Storage Bus

Storage Bus to

C(Y)

Figure 44. ors Flow Chart

ANA — AND to Accumulator

C(Y) to

Storage Bus

Indicators. None.

Timing: 2 cycles

Execution. When the corresponding bit of either

location Y or the ac (or both) is a 1, a 1 replaces the

contents of that position in the ac. When the cor-

responding bits of both location Y and the ac are 0's,

a replaces the contents of that position of the ac.

The c(y) and the S and Q positions of the ac are un-

changed. See Figure 43.

Storage Bus to

Storage Register

AC (P, 1-35) to

Storage Register,

and at Same Time

SR to SR

T
SR (SJ-35) to

Adder (P, 1-35)

Adder (Q-35) to AC

Figure 43. ora Flow Chart

ORS -OR to Storage

0602
11 12-1314 17 18-2021

Description. Each bit of the c(ac) P|1 _ 35 is matched
with the corresponding bit of the c(y)s1 _35 , c(ac)p
being matched with c(y) s .

Indicators. None.

-0320 F T Y
11 12-1314 17 18-2021

Description. Each bit of the c(y)s1 _35 is matched
with the corresponding bit of the c(ac)p>1 _35 . c(y)s is

matched with c(ac)p .

Indicators. None.

Timing: 3 cycles

Execution. When the corresponding bits of both

location Y and the ac are l's, a 1 replaces the con-

tents of that position in the ac. When the correspond-

ing bit of either location Y or the ac, or both, is a 0,

a replaces the contents of that position in the ac.

The S and Q positions of the ac are cleared. The c(y)

are unchanged. See Figure 45.

ANS-AND to Storage

+0320

Description. Each bit of the c(ac) p>1 .35 is matched
with the corresponding bit of the c(y)s1 . 35 , c(ac)p

being matched with c(y) s .

Indicators. None.

Timing: 4 cycles

Execution. When the corresponding bits of both

the ac and location Y are l's, a 1 replaces the contents

of that position in location Y. When the correspond-

ing bit of either the ac or location Y, or both, is a 0,

a replaces the contents of that position in location

Y. The c(ac) are unchanged. See Figure 45.

48 ibm 7090

ANA, ANS Inst,
ERA

Complement accumulator Contents of Y to SR

Contents of Y to SR Add AC to SR and put

results in the AC

Exchange SR and AC
SR to AC. At the same time

"OR" AC and SR into the SR.

Complement AC

SR to AC. At the same time

gate SR to SR and AC to SR

("AND" complement in SR)

Complement AC

Exchange SR and AC

Exchange the SR and AC
Shift AC left 1 place

Complement AC

ANA

Add SR and AC in the adders

and place the result in the

AC

Inst.
ANS

Complete Exchange AC and SR

SR to location Y

Comp accumulator

Figure 45. ana, ans, and era Flow Chart

ERA — Exclusive OR to Accumulator

+0322
11 12-1314 17 18-2021

Description. Each bit of the c(y)s1 .35 is matched

with the corresponding bit of the c(ac) Pj1 _ 35 , c(y) s

being matched with c(ac)p .

Indicators. None.

Timing: 3 cycles

Execution. When the corresponding position of the

ac matches the position in location Y, a replaces

the contents of that position in the ac. When the

corresponding position of the ac does not match the

position in location Y, a 1 replaces the contents of

that position in the ac. Positions S and Q of the ac

are cleared. The c(y) are unchanged. See Figure 45.

the following logical operations affect the contents

of the accumulator only.

COM — Complement Magnitude

+0760
17 18-20 21-23 24

Description. All l's are replaced by 0's and all 0's

are replaced by l's in the c(Ac) QfP>1 _3 5 . The c(ac)s is

unchanged. Address modification may change the in-

struction itself.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 46.

Decode instruction

CLM

COM

Comp AC (Q-35)

to adder (Q-35)

i
Adder (Q-35) to

AC (Q-35)

Figure 46. clm and com Flow Chart

CLM — Clear Magnitude

+0760
17 18-20 21-23 24

Description. The c(ac)q5P>1 _ 35 are cleared. The
c(ac)s are unchanged. Address modification by an in-

dex register may change the operation itself.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 46.

CHS — Change Sign

+0760
17 18-20 21-23 24

Description. If ac sign is plus, it is made negative.

If it is negative, it is made plus. Address modification

by an index register may change the operation itself.

c (ac) Q)P) i-35 are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 47.

Computer Instructions 49

+ _/^AC \^ -

"^^sign^/

" ir

Set AC 1 Set AC
sign minus sign plus

Figure 47. chs Flow Chart

SSP-Set Sign Plus

+0760
17 13-20 21-23 24

Description. The sign of the ac is set to plus (0)

.

Address modification by an index register may result

in changing the operation itself.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 48.

SSM — Set Sign Minus

17 18-20 21-23 24

Description. The sign of the ac is set to minus (1).

Address modification may result in changing the op-

eration itself.

Indicators. None

Timing: 2 cycles

Execution. See Figure 48.

Decode the instruction

SSP
Inst.

SSM

Set AC
sign plus

Set AC
sign minus

Figure 48. ssm and ssp Flow Chart

Sense Indicator Operations

The following 24 instructions make reference to the

36-bit sense indicator (si) register. The 36 bits of the

si may be thought of as switches which may be turned
on or oft and tested either singly or in groups by the

program.

The contents of the si register are manipulated
through the use of a mask. The mask is a bit pattern

comprised of l's and 0's which may appear in an
instruction, the ac, or any storage location. All masks
for si operations are used in the same way; that is,

each position in the mask is compared with the cor-

responding position in the si register. For the posi-

tions in the mask which contain a 1, the correspond-

ing position in the si is either modified or tested de-

pending upon the si operation used. For the zero bits

in the mask, the corresponding positions of the si

are not affected.

Four of the sense indicator operations are concerned
with the transmission of full 36-bit words between the

si and either the ac or core storage. The remaining 20

operations are used to test or modify the c(si). These
20 operations may be classified by the following five

functions:

1. Set or Logical OR. These operations replace

with a 1, the contents of each si position selected by
the mask.

2. Reset. These operations replace with a the

contents of each si position selected by the mask.

3. Invert. These operations replace the contents of

each si position selected by the mask with its comple-
ment; i.e., l's are replaced by 0's and 0's are replaced

by l's.

4. On Test. These operations examine the contents

of each si position selected by the mask. If all ex-

amined positions contain a 1, the calculator will

either transfer to a location Y or skip the next instruc-

tion, depending upon the testing operation used.

5. Off Test. These operations examine the contents

of each si position selected by the mask. If all exam-
ined positions contain a 0, the calculator either trans-

fers to location Y or skips the next instruction, de-

pending upon the testing operation used.

PAI — Place Accumulator in Indicators

+0044 ^
Ml

Description. The c (ac) p>1 _ 35 replace the c (si) _ 35 .

The c (ac) are unchanged.

Indicators. None.

Timing: 1 cycle.

Execution. See Figure 49.

50 ibm 7090

Decode the instruction

|

5TljPAI u F3|A
i

'
A LDI ^

f

AC(P,l-35)

to S 1(0-35)

Sl(0-35)to

AC(P,l-35)
Stor. Bus to

storage reg.

S 1(0-35) to

SR(S,l-35)

y t i' 1

Reset AC
(S and Q)

SR(S,l-35)

to S 1(0-35)

Stg.reg.to

stg.bus

Figure 49. pai, pia, ldi, and sti Flow Chart

PIA — Place Indicators in Accumulator

-0046
^

Description. The c(si) _35 replace the c(ac)p1 _ 35 .

Positions S and Q of the ac are cleared. The c(si)

are unchanged.

Indicators. None.

Timing: 1 cycle.

Execution. See Figure 49.

LDI — Load Indicators

+ 0441 F lll T Y
11 12-1314 17 18-2021

Description. The c(y)s1 _ 35 replace the c(si) _35 . The
c(y) are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 49.

STI — Store Indicators

+ 0604 F 11^ T Y
11 12-1314 17 18-2021

Description. The c(si) _35 replace the c(y) Sj1 _ 35 . The
c(si) are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 49.

OAI — OR Accumulator to Indicators

Description. Each bit of the c(ac) p>1 _35 is matched

with the corresponding bit of the c(si) _35 . The c(ac)

are unchanged. When the corresponding bit of either

(or both) the ac or si is a 1, a 1 replaces the contents

of that position in the si. When the corresponding

bit of both the ac and si is a 0, a replaces the con-

tents of that position of the si.

Indicators. None.

Timing: 1 cycle.

Execution. See Figure 50.

Decode

in struction

OAI OSI

AC(P, 1-35) and

SI(0-35) to storage

bus

S 1(0-35) and

location Y to

storage bus

Storage bus to storage

register; storage register

to SKO-35)

Figure 50. oai and osi Flow Chart

OSI — OR Storage to Indicators

+0442

Description. Each bit of the c(y) s>1 _ 35 is matched

with the corresponding bit of the c(si) _ 35 . The c(y)

are unchanged. When the corresponding bit of either

location Y or si (or both) is a 1, a 1 replaces the con-

tents of that position of the si. When the correspond-

ing bit of both Y and si is a 0, a replaces the contents

of that position in the si.

Indicators. None.

Timing: 2 cycles

Execution. See Figure 50.

SIL-Set Indicators of Left Half

-0055 R

Description. Each bit in positions 18-35 (R) of this

instruction is matched with the corresponding bit of

the c(si) . 17 . The c(si) 18 . 35 and R are unchanged. When
the corresponding bit of either (or both) R or the

si is a 1, a 1 replaces the contents of that position in

the si. When the corresponding bit of both the R and

the si is a 0, a replaces the contents of that position

in the si.

Indicators. None.

Computer Instructions 51

Timing: 1 cycle.

Execution. See Figure 51.

SIR -Set Indicators of Right Half

+0055 J^
^r

Description. Each bit in positions 18-35 (R) of this

instruction is matched with the corresponding bit of

the c(si) 18 .35 . The c(si) . 17 and R are unchanged. When
the corresponding bit of either (or both) R or the si

is a 1, a 1 replaces the contents of that position in the

si. When the corresponding bit of both the R and
si is a 0, a replaces the contents of that position in

the si.

Indicators. None.

Ti?ning: 1 cycle.

Execution. See Figure 52.

RIA — Reset Indicators from Accumulator

RIS — Reset Indicators from Storage

+ 0445
11 12-1314 17 18-2021

Description. Each bit of the c(y)s1 _35 resets to the

corresponding bit of the c(si) _35 . The g(y) are un-

changed.

Indicators. None.

Timing: 2 cycles

Execution. When the bit in location Y is a 1, a

replaces the contents of that position in the si. When
the bit in location Y is a 0, the contents of that posi-

tion in the si are unchanged. The operation is identi-

cal to that of ria except that the contents of a storage

location, instead of the accumulator, are used to reset

the indicators.

RIL - Reset Indicators of Left Half

-0057

Description. Each bit of the c(ac)Pj1 _35 resets to

the corresponding bit of the c(si) _ 35 . The c(ac) are

unchanged.

Indicators. None.

Timing: 1 cycle.

Execution. When the bit in the ac is a 1, a re-

places the contents of that position in the si. When
the bit in the ac is a 0, the contents of that position

in the si are unchanged. This is accomplished by tak-

ing the contents of the accumulator, bit for bit, and
feeding it into a reset input of the sense register. This
input will accept only a "1" pulse which turns that

position off (0 condition) .

SR (18-35) to adders(P-17)

r

Adders(P-35)to SR (S-35)

1 '

SR (18-35) is now in SR(S-17)

and SR (18-35) is cleared

i

f

Set SI (0-17) for the bit in j

corresponding SR (S-17)

SR (18-35) to adders (18-35)

^
f

Adders to SR— left half of

SR is now clear

I

Combine SR (18-35) and 1

SI (18-35) into SI (18-35)

Description. Each bit in positions 18-35 (R) of this

instruction resets to the corresponding bit of the

c(si) . 17 . The c(si) 18 .35 and R are unchanged.

Indicators. None.

Timing: 1 cycle.

Execution. When the bit in R is a 1, a replaces

the contents of that position in the si. When the bit

in R is a 0, the contents of that position in the si are

unchanged. The operation is identical to that of ria

except that positions 18-35 of the ril instruction are

used to reset positions 0-17 of the sense indicators.

RIR - Reset Indicators of Right Half

+0057
^r

Figure 51. sil Flow Chart Figure 52. sir Flow Chart

Description. Each bit in positions 18-35 (R) of

this instruction resets to the corresponding bit of

the c(si) 18 . 35 . The c(si) . 17 and R are unchanged.

Indicators. None.

Timing: 1 cycle.

Execution. When the bit in R is a 1, a replaces

the contents of that position in the si. When the bit

in R is a 0, the contents of that position in the si are

unchanged. The operation is identical to that of ria

except that positions 18-35 of the rir instruction are

used to reset positions 18-35 of the sense indicators.

52 ibm 7090

IIA — Invert Indicators from Accumulator Execution. The same as iia except that 18-35 of

this instruction is used in resetting positions 0-17 of

the sense indicators.

Description. Each bit of the c(ac)p>1 _35 is matched

with the corresponding bit of the c(si) _35 . When the

bit in the ac is a 1, the contents of that position in

the si are complemented. When the bit in the ac is a

0, the contents of that position in the si are un-

changed. The c(ac) are unchanged.

Indicators. None.

Timing: 1 cycle.

Execution. Sense indicator positions may have "bi-

nary input." When this input is used, a "1" pulse fed

to the position will reverse its status. For example,

if the position holds a and a 1 is fed to it, the posi-

tion will reverse to a 1 status. Likewise, if the position

holds a 1 and a 1 is fed to it, it will flip to a zero

status. Zeros fed to the binary input do not affect the

position. For the iia instruction, the c(ac)p}1 _35 are

fed to the binary inputs of the si(0-35).

MR — Invert Indicators of Right Half

+0051

Description. Each bit of positions 18-35 (R) of this

instruction is matched with the corresponding bit of

the c(si) 18 .35 . The c(si) .17 and R are unchanged.

When the bit in R is a 1, the contents of that position

in the si are complemented. When the bit in R is

a zero, the contents of that position in the si are un-

changed.

Indicators. None.

Timing: 1 cycle.

Execution. The same as iia except that 18-35 of the

iir are used to reset positions 18-35 of the sense indi-

cators.

IIS — Invert Indicators from Storage

+0440 F T Y

TIO — Transfer when Indicators On

+0042 F T Y

Description. Each bit of the c(y)s1 _35 is matched

with the corresponding bit in the c(si) _35 . When the

bit in the location Y is a 1, the contents of that posi-

tion in the si are complemented. When the bit in lo-

cation Y is a zero, the contents of that position in the

si are unchanged. The c(y) are unchanged.

Indicators. None.

Timing: 2 cycles

Execution. The same procedure as iia except that

the contents of storage location Y, instead of the con-

tents of the accumulator, are used to reset the sense

indicators.

ML- Invert Indicators of Left Half

-0051

Description. Each bit of positions 18-35 (R) of this

instruction is matched with the corresponding bit of

the c(si) _17 . The c(si) 18 .35 and R are unchanged. When
the bit in R is a 1, the contents of that position in the

si are complemented. If the bit in R is a zero, the con-

tents of that position in the si are unchanged.

Indicators. None.

Timing: 1 cycle.

Description. For each bit in the c(ac)p>1 _35 that is a

1, the corresponding position of the c(si) _35 is exam-

ined. If all the examined positions in the si contain

a 1, the computer takes its next instruction from lo-

cation Y. If any of the examined positions is not a 1,

the computer takes the next sequential instruction.

The c(ac) and c(si) are unchanged.

Indicators. Trap mode.

Timing: 2 cycles

Execution. See Figure 53.

TIF — Transfer when Indicators Off

+ 0046 F T Y
11 12-1314 17 18-20 21

Description. For each bit of the c(ac)p>1 _35 that is a

1, the corresponding position of the c(si) _35 is exam-

ined. If all examined positions contain 0's, the com-

puter takes its next instruction from location Y. If

any of the examined positions does not contain a 0,

the computer takes the next sequential instruction.

The c(ac) and c(si) are unchanged.

Indicators. Trap mode.

Timing: 2 cycles

Execution. See Figure 53.

Computer Instructions 53

TIO

OR indicators with

with comp. AC

Complement AC

Inst.

Result of OR to

storage register

Re-comp. AC

Add "I" to OR'ed
result, stg.reg.to

adders

Transfer

Figure 53. no and tif Flow Chart

TIF

OR complement of

indicators with comp AC

Next instruction

Test word to SR;

Exchange AC &SR

Comp. test word in

accumulator

Exchange AC & SR

ONT OFT

If

C In st. >

!

f

OR indicators

to storage reg.

OR comp. indicators

to storage register

11

Add "1" to OR'ed result.

Storage reg. to adders

Increase the
instruction ctr.

Figure 54. ont and oft Flow Chart

Next
instruction

ONT — On Test for Indicators

+0446 Y

Description. For each bit in the c(y)s1 .35 that is a

1, the corresponding position of the c (si) _35 is exam-

ined. If all the examined positions in the si contain

a 1, the computer skips the next instruction and pro-

ceeds from there. If any of the examined positions do

not contain l's, the computer takes the next sequen-

tial instruction. The c(y) and c(si) are unchanged.

Indicators. None.

Timing: 4 cycles

Execution. See Figure 54.

OFT - Off Test for Indicators

+ 0444 F 1™ T Y

Indicators. None.

Timing: 4 cycles

Execution. See Figure 54.

LNT-Left Half Indicators on Test

-0056 t§§§ R

Description. For each bit in positions 18-35 (R) of

this instruction that is a one, the corresponding posi-

tion of the c(si) . 17 is examined. The c(si) and R are

unchanged. If all the examined positions contain a 1,

the computer skips the next instruction and proceeds

from there. If any of the examined positions does not

contain a 1, the computer takes the next sequential

instruction.

Indicators. None.

Timing: 3 cycles

Description. For each bit of the c(y)sfl _35 that is a 1,

the corresponding position of the c(si) _35 is examined.

If all the examined positions contain 0's, the computer
skips the next instruction and proceeds from there.

If any of the examined positions does not contain a 0,

the computer takes the next sequential instruction.

The c(y) and c(si) are unchanged.

RNT- Right Half Indicators on Test

+0056

Description. For each bit in positions 18-35 (R)

of this instruction that is a 1, the corresponding posi-

54 ibm 7090

tion of the c(si) 18 .35 is examined. The c(si) and R are

unchanged. If all the examined positions contain a 1,

the computer skips the next instruction and proceeds

from there. If any of the examined positions does not

contain a 1, the computer takes the next sequential

instruction.

Indicators. None.

Timing: 3 cycles

LFT - Left Half Indicators Off Test

-0054 Ml
^

Description. For each bit in positions 18-35 (R) of

this instruction that is a 1, the corresponding position

of the c(si) .17 is examined. The c(si) and R are un-

changed. If all the examined positions contain a 0,

the computer skips the next instruction and proceeds

from there. If any of the examined positions does not

contain a zero, the computer takes the next sequen-

tial instruction.

Indicators. None.

Timing: 3 cycles

RFT- Right Half Indicators Off Test

+0054

Description. For each bit in positions 18-35 (R)

of this instruction that is a one, the corresponding

position of c(si) 18 .35 is examined. If all the examined

positions contain a zero, the computer skips the next

instruction and proceeds from there. If any of the ex-

amined positions does not contain a zero, the com-

puter takes the next sequential instruction. The c(si)

and R are unchanged.

Indicators. None.

Timing: 3 cycles

CONVERT BY REPLACEMENT FROM THE MQ (CRQ) in-

struction. The following two definitions will apply

throughout this description:

Argument—Tht known reference factor necessary to

find a desired item in a table.

Function—-The unknown factor in a table associated

with a known reference factor (argument) .

The contents of the mq are interpreted as six 6-bit

quantities. Each of these quantities may be consid-

ered as a 6-bit binary integer and will be designated

asLl,L2, ,L6 (Figure 55) .

MQ Register

LI L2 L3 L4 L5 L6

T~ 5 6 1112 17 18

Figure 55. mq Register

23 24 29 30 35

The number, Yl, contained in the address part of

the crq instruction is interpreted by the instruction

as the address of the first location (origin) of a table

in core storage. The format of a typical table is shown

in Figure 56. The 6-bit binary integer, LI, is taken

as the first argument and the address Yl + LI is

formed. The instruction then looks up the word lo-

cated at Yl + LI. The left-most six bits of this word,

positions S, 1-5, are taken as the desired function VI.

This 6-bit number, VI, then replaces the number LI

in the mq. The right-most 15 bits of this word, posi-

tions 21-35, are interpreted as an address, Y2, specify-

ing the origin of a second table in core storage. The
number L2 is then taken as the second argument and

a reference to the second table is made at location

Y2 + L2. The contents of Y2 + L2, positions S, 1-5,

make up the second function, V2, and replace L2 in

the mq. Positions 21-35 of this word are interpreted

as a third address, Y3, the origin of a third table in

core storage, and the process continues.

The function VI replaces LI in the mq through a

shifting operation. The mq is shifted left six positions

and the bits of LI are shifted out of position S of the

mq and are lost. The number VI then replaces the

contents of the mq, positions 30-35 (Figure 57)

.

Convert Instructions

The convert operations enable a program to have very

rapid access to information stored in tables in core

storage. A single convert instruction can perform a

series of table look-up operations by making multiple

references to core storage. Three such convert opera-

tions are available in the computer.

To illustrate the method of execution of these con-

vert instructions, the following section describes the

L DC ation

Yl

Yl + LI

Yl + N

Contents

vo Y2

VI Y2

VM Y2

S 5 6

Figure 56. Convert Table

20 21 35

Computer Instructions 55

MQ REGISTER

L2 L3 L4 L5 L6 VI

CVR — Convert by Replacement from the AC

S 5 6 1112 17 18 23 24 29 30 35

Figure 57. mq Register

Thus, the crq instruction provides for replacement
of the contents of the mq from left to right.

The number of such table references made by a

single convert instruction is specified by the count
field, positions 10-17, of the instruction. If a count of

six is given, six numbers VI, V2, , V6 will occupy
the exact mq positions originally containing the six

corresponding arguments LI, L2, , L6. If a count
of one was specified for a crq instruction, the final con-

tents of the mq would be as shown in Figure 57. When
a count of more than six is specified, the values taken

from the tables during the first six references will be

used for additional table references. For example,
VI = L7, V2 = L8, and so on.

After the last function, Vn, has been placed in the

mq, the location in core storage from which Vn has

been taken contains as its address part a number, Yn.
If the tag field of the convert instruction contains a

one, the number Yn replaces the contents of index
register 1. This provides a convenient method for the

program to determine where the last storage table ref-

erence has been made or where the next table refer-

ence is to be made. (Only index register 1 can be
used.)

The CONVERT BY REPLACEMENT FROM THE AC (CVR)

instruction is analogous to the crq instruction. For
this instruction the c(ac)p1 .35 rather than the c(AfoJ

are interpreted as the 6-bit numbers LI, L2, , L6.
Also, the six-place shifts which occur during the execu-
tion of the instruction are right shifts rather than left

shifts. Thus, for the cvr instruction, the replacement
takes place right to left, whereas, for the crq, the re-

placement takes place from left to right.

The caq instruction interprets the c (mq) as six

6-bit quantities LI, L2, , L6 and uses these num-
bers as arguments in the same manner as the crq
instruction. However, instead of replacing the num-
bers LI, L2, , L6, the contents of the looked-up
words are added into the ac. The address parts of

these words are then used as origins for additional
look-ups in the usual manner. Addition into the ac
is logical, with the S position of the word being added
into the P position of the ac. After an argument has
been used for a table reference, the c (mq) are rotated

'

left so that bits leaving position S enter position 35 of
the mq. Thus, if a count of six is specified for a caq
instruction, the final and original c (mq) are identical.

+0114 C 1 Y
S. 1 9 10 17 18-19 21 35

Description. This instruction treats the c(ac)p>1 _35

as six 6-bit quantities and replaces the first C of these

quantities by values from tables in core storage. Posi-

tion S of the ac is unchanged. Note: Bit position Q
is not cleared and will or with the first function, if

present initially.

Indicators. None.

Timing: 2-8 cycles, modification 6

Execution. The instruction is executed in the fol-

lowing steps:

1. The address part (Y) replaces the c(sr) 21 _35 .

2. The count field (C) is placed in the shift reg-

ister.

3. The contents of the shift register are tested. If

the register contains zero, step 4a follows. If the reg-

ister is non-zero, step 4b follows.

4a. If position 20 of this instruction contains a 1,

the c(sr) 21 _33 replace the contents of index register 1

(xra) , and the computer takes the next sequential in-

struction. If position 20 contains a 0, the computer
proceeds directly to the next sequential instruction.

4b. The c(sr) 21_35 are added to the c(ac) 30 _35 to form
an address (X) . The c (x) replace the c (sr) .

5. The c(ac)q P^.35 are shifted right six places. Posi-

tions vacated are filled with zeros.

6. The c(sr) S)1 _ 5 replace the c(ac)P51 _ 5 . However, if

position Q of the ac initially contains a 1, it will be
shifted to position 5 of the ac during step 5. This 1

in position 5 of the ac will remain regardless of the

contents of position 5 of the sr.

7. The contents of the shift register are decreased

by one and the computer returns to step 3.

CRQ — Convert by Replacement from the MQ

-0154

17 18-19 21
3

Description. This instruction treats the c (mq) as

six 6-bit quantities and replaces the first G of these

quantities by values from tables in core storage.

Indicators. None.

Timing: 2-8 cycles, modification 6

Execution. The instruction is executed in the fol-

lowing steps:

1. The address part (Y) replaces the c(sr) 21 _35 .

2. The count field (C) is placed in the shift reg-

ister.

56 ibm 7090

3. The contents of the shift register are tested. If

the register contains 0, step 4a follows. If the register

is not 0, step 4b follows.

4a. If position 20 of this instruction contains a 1,

the c(sr) 21 _35 replace the contents of xra and the com-

puter proceeds to the next sequential instruction. It

position 20 contains a 0, the computer proceeds di-

rectly to the next sequential instruction.

4b. The c(sr) 21 _ 35 are added to the c(mq) s>1 _ 5 to form

an address (X) . The c (x) then replace the c (sr) .

5. The c (mq) are shifted left six places. Bits shifted

out of position S of the mq are lost. Positions vacated

are filled with zeros.

6. The c(sr) s>1 _ 5 replace the c(mq) 30 _35 .

7. The contents of the shift register are decreased

by one, and the computer returns to step 3.

CAQ — Convert by Addition from the MQ

-0114 C H Y
17 18-19 21

Description. This instruction treats the c (mq) as

six 6-bit quantities. The first C of these quantities are

used in making references to tables in core storage.

Words selected by the references are added to the

c(ac) q>p>1 _35 . Position S of the ac is unchanged. Note:

Care should be taken that the binary sum of the quan-

tities added from 21-35 does not carry into position 19

of the ac.

Indicators. None.

Timing: 2-8 cycles, modification 6

Execution. The instruction is executed in the fol-

lowing steps:

1. The address part (Y) replaces the c(sr) 21 _35 .

2. The count field (C) is placed in the shift reg-

ister.

3. The contents of the shift register are tested. If

the register contains 0, step 4a follows. If the register

is not 0, step 4b follows.

4a. If position 20 of this instruction contains a 1,

the c(sr) 2 i-35 replace the contents of xra, and the com-

puter proceeds to the next sequential instruction. If

position 20 contains a 0, the computer proceeds di-

rectly to the next sequential instruction.

4b. The c(sr) 21 _35 are added to the c(mq) s>1 _ 5 to form

an address (X) . The c(x) then replace the c(sr).

5. The c (mq) are rotated six positions to the left.

Bits leaving position S of the mq enter position 35.

6. The c(sr) S)1 _ 35 are added to the c(ac) Q)P)1 _35 and

the sum replaces the c(ac)q iP}1 _ 35 . The sign position of

the sr is added into position P of the ac, and the sign

of the ac is disregarded. Note: Even though ac over-

flow is possible, the overflow indicator is not affected

by this instruction.

7. The contents of the shift register are reduced by

one and the computer returns to step 3.

The reader is referred to the convert programming

examples contained in the programming section of

this manual for possible uses of these instructions.

Input-Output Operations

As has been previously stated, the address part of an

instruction may refer either to a location in core stor-

age, the length of shift, or may be interpreted as a

part of the operation code itself.

The identifying number for the various input-out-

put units appears in the address part of the instruc-

tion. For tapes, card machines and printers the ad-

dress part specifies both the particular i-o unit and

the data channel to which it is attached. Channels A
through H are specified by the numbers 1 through 10,

respectively, appearing as the first two digits of an

octal five-digit address. The last three digits specify

the i-o unit. If the i-o unit is a tape, the mode of

operation, either binary or bcd, is also specified by the

address.

The addresses of the input-output devices are shown

below:

DEVICE CHANNEL BCD ADDRESS BINARY ADDRESS

Tapes A 1201-1212 1221-1232

B 2201-2212 2221-2232

C 3201-3212 3221-3232

D 4201-4212 4221-4232

E 5201-5212 5221-5232

F 6201-6212 6221-6232

G 7201-7212 7221-7232

H 10201-10212 10221-10232

Card Reader A 1321

B 2321

C 3321

D 4321

E 5321

F 6321

G 7321

H 10321

Card Punch A 1341

B 2341

C 3341

D 4341

E 5341

F 6341

G 7341

H 10341

NORMAL BINARY

Printer A 1361 1362

B 2361 2362

C 3361 3362

D 4361 4362

E 5361 5362

F 6361 6362

G 7361 7362

H 10361 10362

Computer Instructions 57

In the following instruction description, only the

operation code will be shown. The address part will

appear in the normal code of Y. All input-output in-

structions may be trapped using the compatibility

feature.

Since it is possible to create magnetic tapes of mixed
density, precautions should be taken so that all read

tape instructions are executed when the tape unit is

set to the density in which the tape was recorded.

RDS-Read Select

+0762
17 18-20 21

Description. This instruction causes the computer
to prepare to read information, from the i-o device

specified by Y, into core storage. If Y specifies a tape,

printer, or card reader, Y also specifies the channel to

which the device is attached.

Any attempt to read in one density a tape that was
recorded in the other density will result in both de-

tected and undetected errors. When rds is used to

skip tape, proper tape density must also be used.

Indicators. Simulate, end of file. (See device being
used.)

Timing: 2 cycles, modification 8

Execution. When a channel is designated, a reset
and load channel instruction must be given within
the specified time following the rds, or the i-o device

will be logically disconnected from the computer and
one record will be passed. (See each device for tim-

ings.) No other select instruction should be inserted

between the rds and its associated rch. When an rds

specifies channel operation, only positions 28-35 of

the address part of the instruction are subject to

effective address modification.

WRS - Write Select

Execution. When a channel is designated, a reset

and load channel instruction must be given within

specified time following the wrs, or the i-o device will

be logically disconnected from the computer and, if

the wrs specified a tape, a blank section of tape will

be written. No other select instruction should be in-

serted between the wrs and its associated rch. If the

end of tape reflective spot is encountered during the

execution of a wrs, the end-of-tape indicator in the

proper channel will be turned on. When a wrs spe-

cifies an i-o device attached to a channel, only posi-

tions 28-35 of the address part of the instruction are

subject to effective address modification.

BSR — Backspace Record

+0764 am T Y

Description. This instruction causes the tape desig-

nated by Y to move backward until recorded informa-

tion is reached and then to continue this backward

motion over information until an end-of-record gap

or load point is encountered.

The tape unit must be in the proper density mode
(the same as the tape being backspaced) before the

bsr is executed, or tape errors will occur.

Indicators. Beginning of tape and simulate.

Timing: 2 cycles, modification 8

Execution. If the tape designated by Y is positioned

at its load point, a bsr is interpreted as a no-operation

and the beginning-of-tape indicator in the proper

channel is turned on. If load point is encountered

before information is encountered, the bot indicator

is turned on. Only positions 28-35 of the address part

of this instruction are subject to effective address modi-

fication.

+0766
II 12 17 18-20 21

Description. This instruction causes the computer
to prepare to write information from storage to the

i-o device specified by Y. If Y specifies a tape, printer

or card punch, Y also specifies the channel to which
the device is attached.

Indicators. Simulate, end of tape. (See device being
used.)

Timing: 2 cycles, modification 8

BSF — Backspace File

-0764

Description. This instruction causes the tape desig-

nated by Y to move backward until recorded informa-

tion is reached and then to continue this backward
motion over information and end-of-record gaps until

an end-of-file record or the load point is encountered.

The tape unit must be in the proper density mode
(the same as the tape being backspaced) before the

bsf is executed or tape errors will occur.

58 ibm 7090

Indicators. Beginning of tape, simulate.

Timing: 2 cycles, modification 8

Execution. If a bsf is given to a tape positioned at

its load point, the bsf is interpreted as a no-operation

and the beginning-of-tape indicator in the proper

channel is turned on. If load point is encountered

before an end-of-file record, the beginning-of-tape in-

dicator is turned on. Only positions 28-35 of the ad-

dress part of this instruction are subject to effective

address modification.

WEF- Write End-of-File

+0770 T Y

Description. This instruction causes the tape desig-

nated by Y to write an end-of-file gap followed by a

tape mark (and its check character) on the tape.

Indicators. End of tape, simulate.

Timing: 2 cycles, modification 8

Execution. If an end of tape reflective spot is passed

over during the execution of a wef, the end-of-tape in-

dicator in the proper channel is turned on. Only posi-

tions 28-35 of the address part of this instruction are

subject to effective address modification.

REW- Rewind

+0772 T Y
17 1820 21

Description. This instruction causes the tape desig-

nated by Y to rewind its tape to the load point posi-

tion.

Indicators. Simulate.

Timing: 2 cycles, modification 8

Execution. If the tape is positioned at its load point

at the time the rew is interpreted, the instruction is

treated as a no-operation. Only positions 28-35 of the

address part of this instruction are subject to effective

address modification.

RUN — Rewind and Unload

-0772 ^WH| T Y
17 18-20 21

Description. The tape unit designated by the ad-

dress portion of this instruction will be rewound and

then put into an automatic unload status.

Indicators. None.

Timing. 2 cycles, modification 8.

Execution. This instruction will be executed in the

same manner as a rewind instruction except that it

will never be treated as a no-operation if the tape is

positioned at load point when execution occurs. After

the rewind, a normal unload operation will occur as

if the operator had depressed the unload key. Only

positions 28-35 of this instruction are subject to modi-

fication by index register action. With a tape at load

point, this instruction will cause an unload operation

only.

SDN — Set Density

+0776 ^illlllHiiH Y

Description. The address portion of this instruction

will determine which density mode is being used for

a given tape operation.

Indicators. None.

Timing. 2 cycles.

Execution. The address portion of this instruction

will include the data channel being used, tape unit

number, and the density mode as follows:

CHANNEL HIGH DENSITY LOW DENSITY

A 1221- 1232 1201- 1212
B 2221- 2232 2201- 2212
C 3221- 3232 3201- 3212
D 4221- 4232 4201- 4212
E 5221- 5232 5201- 5212
F 6221- 6232 6201- 6212
G 7221- 7232 7201- 7212
H 10221-10232 10201-10212

Care must be taken in using this instruction because

of the possibility of changing the density mode in the

middle of a tape. When power is first applied to the

7090 system, all tape units will automatically be placed

in high density status.

RDCA— Reset Data Channel A

+0760 1352
17 18-20 21

Description: This instruction resets all registers

and indicators in the designated data channel. All

transmission is terminated and tape or other selected

units are immediately disconnected. If the instruction

Computer Instructions 59

is executed while a tape is in motion, the tape is

stopped immediately regardless of the position of the

tape head with regard to the inter-record gap. Any
instructions which have been stacked will be lost and
status indicators previously set by an enable instruc-

tion will be turned off.

Timing: 2 cycles.

Execution: All registers, indicators and control ele-

ments that are turned off by the reset key on the

data channel console are turned off by this instruc-

tion. Since the primary purpose of this instruction is

to clear a channel after it has been "hung up" by

selecting a unit that is not ready, no attempt is made
to synchronize its operation with i-o units. Use of the

instruction for other purposes may result in unpredict-

able operation. Address modification may cause the

operation code to be changed. Instruction codes and
mnemonics for each channel are:

RDCB + 0760. ..2352
RDCC +0760. ..3352
RDCD + 0760. ..4352
RDCE +0760. .5352
RDCF +0760. .6352
RDCG + 0760. ..7352
RDCH + 0760. .10352

The following program is an example of using the

rdc to determine ready status of tape units attached

to channel A. The program stores a bit pattern in

location stat such that a 1-bit signifies the tape unit

is ready (position 35 corresponds to unit 1, 34 to

unit 2, etc.)

.

OCATION INSTRUCTION ADDRESS COMMENTS
TCOA *

STZ STAT
AXT 10, 1

CAL ONE
READY BSRA 11, 1

CRQ

TCOA

0, ,15

*+2

Delay is approximately
30 microseconds

ORS
ALS
RDCA

STAT
1

Ready
Not Ready

CRQ 0, ,15 Delay approximately
30 microseconds

TIX READY, 1, 1

ONE HTR 1

STAT OCT

In this program, the rdc instruction serves two

purposes:

1. If the tape is not ready, the channel is cleared so

that the next i-o instruction will be accepted (in the

CPU) .

2. If the tape is ready, execution of the rdc will

effectively stop the backspace operation before it gets

started so that the tape does not move from its origi-

nal position.

Input-Output Transmission Operations

Instructions that either send commands to a data chan-

nel or store information from data channel registers

are classified as input-output transmission operations.

These instructions are described in groups of eight.

All eight instructions within a group are identical in

function and differ only in that each refers specifically

to one of the eight possible data channels. The in-

structions will be described for data channel A.

SCHA -Store Channel A

+ 0640 F ill T Y

Description. This instruction replaces the c(y) with

the contents of the channel A address, location, and

operation registers. If channel A is not attached to

the computer when the scha is given, the c(y) are

cleared by the scha.

Indicators. None.

Timing: 2 cycles

Execution. The c(y) 21 _35 are replaced by the c(ar),

the c(y) 3 .17 are replaced by the c(lr), and the c(y)s>1)2,i 9

are replaced by the contents of the operation register.

An scha instruction may be executed at any time,

regardless of whether or not the specified channel is

in operation. If the channel is in operation and the

channel registers are in the process of being changed,

the execution of the scha will be delayed until the

change has been completed. Note that the c(ar) will

be one greater than the storage location of the last

word involved in data transmission and that the

c(lr) are one greater than the storage location from

which the current command was taken. A channel

relinquishes priority between the time the last word
is transmitted by an iocp or iosp command and the

arrival of a subsequent channel command. There-

fore, an sch may store an address which is one greater

than the address of the last word transmitted by the

iocp or iosp commands.

INSTRUCTION CODE NAME

SCHB -0640 Store Channel B
SCHC +0641 Store Channel C
SCHD -0641 Store Channel D
SCHE +0642 Store Channel E
SCHF -0642 Store Channel F
SCHG +0643 Store Channel G
SCHH -0643 Store Channel H

RCHA- Reset and Load Channel A

+ 0540 F in T Y

Description. If channel A has been selected by

either an rds or wrs, the c(y)s x 2 19 replace the channel

operation register, c(y) 3 .17 replace the c(wr) and the

60 ibm 7090

c(y) 21 _35 replace the c(ar). In addition, the number Y

plus one replaces the c(lr).

Indicators, i-o Check.

Timing: 3 cycles

Execution. If channel A is not selected when the

rcha is given, the rcha executes normally but the i-o

indicator is turned on (If the command loaded by the

rcha specifies indirect addressing, it will not occur).

For each rds or wrs, the corresponding rcha must be

given if any transmission between storage and the se-

lected i-o device is to take place. If a second rcha is

given at a later time, the order is executed immedi-

ately. No other select instruction should be inserted

between the rch and its associated wrs or rds. See

"Programmed Interruption of a Data Channel" for

further details regarding this type of operation.

INSTRUCTION CODE NAME

RCHB -0540 Reset and Load Channel B
RCHC +0541 Reset and Load Channel C
RCHD -0541 Reset and Load Channel D
RCHE +0542 Reset and Load Channel E
RCHF -0542 Reset and Load Channel F
RCHG +0543 Reset and Load Channel G
RCHH -0543 Reset and Load Channel H

LCHA -Load Channel A

+ 0544

Description. If the data channel has been selected,

the computer delays until an ioct, iort, or iost com-

mand is processed for channel A or the channel leaves

operation. After an ioct, iort, or iost command has

been executed by the channel A, the lcha is executed

as shown below.

Indicators, i-o check.

Timing: 3 cycles, modification 8

Execution. The c(y) s>1j2>19 replace the contents of

channel A operation register. c(y) 3 . 17 replace the

c(wr), the c(y) 21 _35 replace the c(ar), and the number

Y plus one replaces the c(lr). If an lcha is issued

and either (1) the channel is not selected, or (2)

channel A is selected but an ioct, iort, or iost com-

mand is not executed before the channel disconnects,

the i-o check indicator is turned on and the lcha is

treated as a no-operation.

INSTRUCTION CODE NAME

LCHB -0544 Load Channel B
LCHC +0545 Load Channel C
LCHD -0545 Load Channel D
LCHE +0546 Load Channel E
LCHF -0546 Load Channel F
LCHG +0547 Load Channel G
LCHH -0547 Load Channel H

Data Channel Commands

The eight types of data channel commands are de-

scribed in much the same manner as other computer

instructions. The following steps list command condi-

tions:

1. The letter Y in the address part (21-35) of a com-

mand is used to denote a core storage location.

2. The letter C in the decrement part (3-17) of a

command is used to denote a word count amount.

3. The numerical operation code is shown by an

octal digit in the prefix part (S, 1 and 2). The digit

may be visually converted to its binary equivalent

for reference to the bit pattern actually used.

4. Indirect addressing of data channel commands is

possible on the 7090 system. Position 18 of the com-

mand contains the flag bit. Thus, with a command

having an address part (Y) and a one in position 18,

the address part of location Y replaces the address

part of the command before it is executed. With a

zero word count, indirect addressing does not occur

on iocp or iosp commands. Indirect addressing wrill

occur only on read or write operations.

5. Separate commands have not been formulated to

handle bit position 19. Instead, a fifth character (N—

denoting non-transmit) is appended to the mnemonic

codes used for positions S, 1, and 2. This type of com-

mand is used for read operations only.

6. Seven of the eight commands deal with data

transmission. The codes for these commands all con-

tain the letters "i-o".

7. The eighth command is a transfer in channel

command.

8. The word disconnected means that the units in-

volved are separated logically rather than physically.

When a disconnect is signalled, it may be delayed de-

pending on the operation being performed. For ex-

ample:

a. Write Tape. Disconnect will not occur until the

end of record gap is written. This permits a pro-

grammed ett or trc test to be valid if given after

the channel leaves operation (disconnects).

b. Read Tape. Disconnect will not occur until tape

control circuits and tape units have accepted the

read instruction. This assures that any read select

instruction will move tape before the disconnect

occurs even if an immediate disconnect is pro-

grammed. Disconnect will not occur between the

last word of the record and the interrogation of the

longitudinal redundancy check character (lrc).

This assures that with a channel programmed to

read an entire record, a trc test, given after the

Computer Instructions 61

channel leaves operation, will have tested the lrc

character.

Recognition of an end of file, while reading tape

or cards, causes a disconnect regardless of the com-
mand being used. The tape unit does not leave

operation until the lrc character has been checked

and the end of record reached. An iorp, iort, iosp,

or iost command will not recognize a logical end
of record on an end of file.

c. Card Machines. Unless a disconnect is pro-

grammed immediately following a transmission or

end of record time, the disconnect will generally be

delayed until the next transmission or end of record

time. For example, if the channel is loaded with an
iocd command (with zero word count) ten milli-

seconds after end of record time, an extra machine
cycle will occur. The disconnect then occurs at the

9-left transmission time of this extra cycle.

In execution descriptions of the i-o commands, tape

is assumed to be the i-o device. However, mechanical
motion on the tape (from record to record) may be
compared to card equipment (from card to card or

line to line) on the printer. The descriptions may
then be applied to i-o devices other than tape.

IOCD — Input-Output under Count Control

and Disconnect

IOCP — Input-Output under Count Control

and Proceed

FNI

17 1819 21

Description. C words are transmitted between an
i-o device and core storage beginning with location Y.

The data transmission is under control of the count
(C) field only.

Indicators. See i-o device being used.

Timing: See i-o device being used.

Execution

Read Operation. If the word count has been re-

duced to zero before a record gap is reached, the chan-

nel leaves operation and tape motion will continue
until a record gap is reached. No transmission will

occur during this time. If a record gap is encountered
when the word count is not zero, the gap is ignored
and reading continues from the next record. An iocd

command with a word count, loaded at the end of

record will disconnect the channel.

Write Operation. When C words have been written

on tape, a record gap is written. If this command is

given at the beginning of a record and C is initially

zero, approximately $f/
4 inches of blank tape will be

written before the record gap is written. The chan-
nel is then disconnected.

«
17 1819 21

Description. C words are transmitted between an

i-o device and core storage location Y. The data trans-

mission is under control of the count field only. When
C is reduced to zero, or is initially zero, the next se-

quential command is brought into the data channel

and executed.

Indicators. See i-o device being used.

Timing. See i-o device being used.

Execution

Read Operation. C words are read from tape and

stored in consecutive storage locations beginning with

location Y. When the word count has been reduced to

zero, the channel takes its next command in sequence

and executes it.

If the word count is reduced to zero by the last word
of a record and the next command is an iorp, iosp,

iort, or iost, the present end of record will be recog-

nized. Unlike the iosp, the iocp command need not

proceed within 11 cycles in order to recognize the

present end of record.

Write Operation. C words from storage beginning

with location Y are written on tape. When the speci-

fied words have been written, the channel proceeds to

the next sequential command. An end of record is

not written on tape when the word count is reduced
to zero.

In printing or the punching of cards, if the word
count is reduced to zero on the 12-row right transmis-

sion point, and the next command is an iorp or iort,

the end of the present machine cycle (record) will be
recognized.

IORP — Input-Output of a Record and Proceed

™i
S.l-2 3 17 1819 21

Description. See "Execution."

Indicators. See i-o device being used.

Timing: See i-o device being used.

Execution

Read Operation. Words are transmitted from tape

and stored in consecutive storage locations until either

an end of record is encountered or the word count has

been reduced to zero. If the word count is reduced to

zero (or is initially zero) before an end of record is

reached, the rest of the words in that record are

62 ibm 7090

skipped without transmission to storage. When the

record gap is reached, the channel takes the next se-

quential command.

Write Operation. When C words have been written,

a record gap is written and the channel proceeds to

the next sequential command.

IOCT — Input-Output under Count Control

and Transfer

FN! Y
17 1819 21

Description. C words are transmitted between an

i-o device and storage beginning with location Y. The

data transmission is under control of the count field

only. When C is reduced to zero, the next command
is taken from a core location specified by the load

channel instruction in the main program or discon-

nects (and traps if the channel is enabled) if no load

channel instruction is waiting. If this command is

loaded by an rch or lch instruction and C is initially

zero, the channel is immediately disconnected unless

restricted by the operation.

Indicators. Command Trap.

Timing: See i-o device being used.

Execution

Read Operation. Execution of the command is un-

der control of the count field only and end of record

gaps are ignored. If the word count is reduced to zero

by the last word of a record and the next command is

an iorp, iosp, iort, or iost, the present end of record

will be recognized. Unlike the iost command, the lch

instruction need not load the channel within 1 1 cycles

in order to recognize the present end of record.

Write Operation. An end of record will not be

written after C words have been written if the lch

instruction results in bringing into the channel a new
word count.

In printing or the punching of cards, if the word
count is reduced to zero on the 12-row right transmis-

sion point and the next command is an iorp or iort,

the end of the present machine cycle (record) will be

recognized.

IORT — Input-Output of a Record and Transfer

FN!
17 1819 21

Description. See "Execution."

Indicators. Command trap.

Timing: See i-o device being used.

Execution

Read Operation. Words are transmitted from tape

and stored in consecutive storage locations until either

an end of record is encountered or the word count has

been reduced to zero. If the word count is reduced to

zero (or is initially zero) before an end of record is

reached, the rest of the words in that record are

skipped without transmission to storage. When the

record gap is reached, the next command is taken

from a core location specified by the lch instruction in

the main program or disconnects (and traps if the

channel is enabled) if no lch is waiting.

Write Operation. When C words have been written,

a record gap is written and the channel takes its next

command from a core location specified by the lch

instruction in the main program or disconnects (and

traps if the channel is enabled) if no lch instruction

is waiting.

IOSP — Input-Output until Signal, then Proceed

6 C F
»i

Y
17 1819 21

Description. See "Execution."

Indicators. See i-o device being used.

Timing: See i-o device being used.

Execution

Read Operation. Words are read into consecutive

storage locations beginning with location Y until

either the contents of the word counter are reduced to

zero or an end of record is reached. When either event

occurs, the channel proceeds immediately to the next

sequential command and executes it.

With a tape read operation and an iosp or iost

command whose word count is reduced to zero by the

last word in the record and whose next command is an

iorp, iort, iosp, or iost, this next command will

normally enter the channel in time to recognize the

present end of record. This next command transmits

no data and is effectively skipped. If this next com-

mand cannot enter the channel within 11 machine

cycles, the iorp, iort, iosp, or iost command will not

recognize the present end of record gap, but will proc-

ess the following record. To determine if this se-

quence can be safely programmed, three cycles should

be allowed if the cpu is processing a tco instruction

(five cycles if other instructions are being processed)

plus one cycle for each channel in operation, plus one

cycle for each channel programmed with proceed com-

mands, plus one cycle for each channel which may
process a tch at this time, plus one cycle for each

channel which may have indirect addressing at this

Computer Instructions 63

time. If the total exceeds 1 1 cycles, the sequence

described must not be used.

Write Operation. C words are written on tape be-

ginning with storage location Y. When the specified

words have been written, the channel proceeds to the

next sequential command. An end of record is not

written on tape when the word count is reduced to

zero. Note that this is identical to the operation of

the iocp.

In printing or the punching of cards, if the word
count is reduced to zero on the 12-row right transmis-

sion point and the next command is an iorp or iort,

the end of the present machine cycle (record) will be

recognized.

IOST — Input-Output until Signal then Transfer

« zi

Description. See "Execution."

Indicators. See i-o device being used.

Timing: See i-o device being used.

Execution

Read Operation. Words are read into consecutive

storage locations beginning with location Y until

either the contents of the word counter are reduced

to zero or an end of record is reached. When either

event occurs, the channel takes its next command
from a core location specified by the lch instruction in

the main program or disconnects (and traps if the

channel is enabled) if no lch instruction is waiting.

With a tape read operation and an iost command
whose word count is reduced to zero by the last word
in the record and whose next command is an iorp,

iort, iosp, or iost, this next command will normally
enter the channel in time to recognize the present end
of record. This next command transmits no data and
is effectively skipped. If this next command cannot
enter the channel within 1 1 cycles, the iorp, iort, iosp,

or iost command will not recognize the present end of

record gap but will process the following record. To
determine if this sequence can be safely programmed,
two cycles should be allowed for the lch instruction

plus one cycle for each channel in operation, plus one
cycle for each channel programmed with proceed com-
mands, plus one cycle for each channel using indirect

addressing. If the total exceeds 1 1 cycles, this sequence
must not be used.

Write Operation. C words are written on tape from
storage beginning with location Y. When C words
have been written, the channel takes its next command
from a core location specified by the lch instruction

in the main program or disconnects (and traps if the

channel is enabled) if no lch instruction is waiting to

be executed.

In printing or the punching of cards, if the word
count is reduced to zero on the 12-row right trans-

mission point and the next command is an iorp or

iort, the end of the present machine cycle (record)

will be recognized.

Program Examples

The following examples illustrate the use of data

channel commands to read and write tape. The pro-

grams, aside from the instructions and command
codes, are shown in the octal number system.

Figure 58 shows a program which may be used to

read and skip tape records. The first instruction

(500) selects the proper channel and tape. The sec-

ond one loads the first command (1000) into the

channel. The command execution proceeds as follows:

LOCATION INSTRUCTION COMMENTS
00500

00501

01000

01001

01002

01003

RDS 01201

RCHA 01000

IOCP 00006 03000

IOCPN 00005 2 00000

IORP 77777 03006

IOCD 00000 00000

Select tape 1, channel A
Load first command

Read first six words

Skip next five words

Read remaining words in record

Disconnect

Figure 58. Read and Skip Tape Program

1000— IOCP 00006 03000. This command
reads the first six words from tape and places them
into core locations starting with 3000.

1001— IOCPN 00005 2 00000. This command
reads, but does not transmit, the next five words, in

effect skipping them.

1002 -IORP 77777 03006. The next com-

mand reads the remaining words in the record into

locations starting with 3006. When the record gap is

sensed, the next command (iocd) will disconnect the

channel and the tape unit, thus ending the channel

program.

Figure 59 shows a program that could be used to

write all of core storage on a tape and delay at loca-

tion 502 until all but the last word has been written.

The first two instructions select the channel and
tape unit to be used and load the first channel com-

mand. The central processing unit then senses the

load channel instruction (ichf) and the main pro-

gram will wait until the next-to-last word has been

64 ibm 7090

written before loading the second channel command
which will write location 77777 and disconnect both

the channel and the tape unit.

LOCATION
00500

00501

00502

01000

01001

INSTRUCTION
WRS
RCHF
LCHF

IOCT
IOCD

06202

01000

01001

77777 00000

00001 77777

COMMENTS
Select tape 2, channel F

Load first command
Wait until last word, then load

channel F

Write locations 00000-77776

Write location 77777 and then

disconnect

Figure 59. Write Tape Program

RCT — Restore Channel Traps

+0760 14

17 18-20 21-23 24

Description. This instruction will allow traps to

occur as specified by the previous enable instruction.

It cancels the inhibiting effect of an executed trap.

Indicators. Trap Control.

Timing: 2 cycles

Execution. Since the address part of this instruc-

tion is a part of the operation code, modification by

an index register may change the operation itself.

Channel Trap Operations

ENB -Enable from Y

+ 0564 F
Ff^i

^
T Y

S,l 11 2-13 14 17 18-20 21 35

Description. When this instruction is executed, the

contents of location Y determine which signals may
cause a trapping operation. Execution of each enable

instruction cancels the effect of previous enable in-

structions. All channels may be disabled (traps will

not occur) by executing an enable instruction whose

operand contains all zeros.

Indicators. None.

Timing: 2 cycles

Execution. Trapping signals are controlled as fol-

lows:

SIGNAL DUE TO CHANNEL EFFECTIVE IF

A"l" in

POSITION

Channel command or EOF A 0035
Channel command or EOF B 0034
Channel command or EOF C 0033
Channel command or EOF D 0032
Channel command or EOF E 0031
Channel command or EOF F 0030
Channel command or EOF G 0029
Channel command or EOF H 0028
Tape check A 0017
Tape check B 0016
Tape check C 0015
Tape check D 0014
Tape check E 0013
Tape check F 0012
Tape check G 0011
Tape check H 0010

Execution of a trap will inhibit all further traps until

a new enable instruction is executed or a restore-

channel-trap instruction is executed. Depression of

the reset, clear key, or execution of an rdc instruction,

will also disable all channels.

System Compatibility Operations

ESNT— Enter Storage Nullification and Transfer

-0021 F T Y
11 121314 17 18-2021

Description. This instruction turns on a half-storage

mode indicator, which serves as a protective device for

a program being run while using the compatibility

feature of the computer.

Indicators. Simulate, trap mode.

Timing: 1 cycle

Execution. With the half-storage mode indicator on,

the following events occur: (1) the upper half of

storage is made unavailable for reference by a 704

program, (2) index register capacity is halved, and

(3) program control is transferred to location Y. The
indicator may be reset by depressing the reset, clear,

or any of the load keys, execution of any i-o trap (ex-

cept data channel trap) , or execution of an lsnm
instruction.

LSNM — Leave Storage Nullification Mode

•0760 10

17 1 8 20 21-23 24

Description. Execution of this instruction returns

the computer system to its normal operating capacity

Computer Instructions 65

by turning the half-storage mode indicator off. If the

computer is in its normal operating mode and an
lsnm instruction is executed, the instruction will be

treated as a no-operation.

Indicators. Simulate.

Timing: 2 cycles

Execution. Since the address part of this instruction

is a part of the operation part, modification by an
index register may change the operation itself.

Execution. The location plus one of the trapped in-

struction is stored in core location 40,000 and pro-

gram control is transferred to location 40,002. The
execution of this instruction will also turn off the half-

storage, select trap, and the copy trap mode indicators.

The copy trap mode indicator may also be turned off

by: depression of the clear, reset, or load keys, or the

execution of any i-o trap (except a data channel trap) .

Since the address of this instruction is a part of the

operation code, modification by an index register

may change the operation itself.

ESTM — Enter Select Trap Mode

0760
17 18 20 21-23 24

Description. This instruction turns on the select

trap mode indicator, and, while in this mode, i-o

select and sense instructions are not executed but are

trapped. It should be used before entry into a 704
program, so that a 704 instruction will be trapped
rather than result in indefinite delays.

Indicators. Simulate.

Timing: 2 cycles

Execution. Instructions that will be trapped in-

clude: WEF, BSF, BSR, REW, RDS, WRS, I-O Sense, RTT, EOT,
redundancy and bot. The location plus one of the
trapped instruction is stored in core storage location

40.000. Program control is transferred to location

40.001. Trapping also turns off the half-storage, select

trap, and copy trap indicators. The indicators may
also be turned off by: depression of reset, clear, or
load keys, or execution of any i-o trap (except a data
channel trap)

. Since the address part of this instruc-

tion is a part of the operation code, modification by
an index register may change the operation itself.

EFTM — Enter Floating Trap Moat

-0760

17 18-20 21-23 24

Description. This instruction turns on the indicator

for floating-point trap mode. When in this mode,
floating-point overflow and/or underflow will cause a

trapping operation.

Indicators. MQ overflow.

Timing: 2 cycles

Execution. This mode is the normal operating

mode. Floating-point overflow-underflow have the

operating characteristics of the standard computer
(store location plus one in address 0000 and then

transfer to 0010). Since the address part of this in-

struction is a part of the operation code, modification

by an index register may change the operation itself.

LFTM — Leave Floating Trap Mode

ECTM — Enter Copy Trap Mode

-0760
17 18 20 21-23 24

Description. This instruction turns on the copy
trap mode indicator. With the indicator on, cpy, cad,
and lda instructions are trapped instead of being
executed.

Indicators. Simulate.

Timing: 2 cycles

Description. This instruction turns off the floating

trap mode indicator, giving the computer floating-

point overflow characteristics of the standard 704

(turns on the ac or mq overflow indicators only)

.

Indicators. MQ overflow.

Timing: 2 cycles

Execution. Depression of the reset, clear, or load

keys will return the computer to its normal operating

mode (floating trap mode) by turning the floating

trap mode indicator on. Since the address of this

instruction is a part of the operation code, modifica-

tion by an index register may change the operation

itself.

66 ibm 7090

Commands and Instructions for the
IBM 7909 Data Channel

The following instructions and commands are used

with the 7909 Data Channel and its attached adapter

and input-output devices. Execution timing is not

included, because it depends on command organiza-

tion in core storage and the status of the addressed

data channel.

RSCA — Reset and Start Channel A

+0540 Y

Description. On execution of this instruction, the

channel is selected and reset and takes its next com-

mand from location Y. The instruction is interlocked

against channel activity; if the instruction is executed

while the channel is busy, its execution is delayed

until the channel is in wait status.

Indicators. None.

Execution. If the selected channel is in wait status,

the c(y) S)1_3>19 replace the channel operation register,

c
(
Y)3-i? replace the word counter, and c(y) 21_35 replace

the contents of the address counter. In addition, the

number Y+l replaces the contents of the command
counter. If the channel is not in wait status, the

execution of the cpu program is delayed until the

channel executes either a wtr or twt command.

Instruction codes for other channels are:

INSTRUCTION CODE NAME
RSCB -0540 Reset and Start Channel B
RSCC + 0541 Reset and Start Channel C
RSCD -0541 Reset and Start Channel D
RSCE + 0542 Reset and Start Channel E
RSCF -0542 Reset and Start Channel F

RSCG + 0543 Reset and Start Channel G
RSCH -0543 Reset and Start Channel H

STCA- Start Channel A

+0544 ^
Description. Execution of this instruction is delayed

if the channel is not in wait status. If in wait status,

the channel is started and takes its next command
from the address part of the wait command.

Indicators. None.

Execution. If the channel is in wait status, trie

command counter is reset and replaced with the

contents of the address counter. The channel then

executes the command at the location specified by

the command counter and increments the command
counter by one (adds one to the command counter

contents).

Instruction codes for other channels are:

INSTRUCTION CODE NAME
STCB -0544 Start Channel B
STCC + 0545 Start Channel C
STCD -0545 Start Channel D
STCE + 0546 Start Channel E
STCF -0546 Start Channel F
STCG + 0547 Start Channel G
STCH -0547 Start Channel H

SCHA- Store Channel A

4-0640

Description. Execution of this instruction causes

the specified channel to be selected and that channel's

command counter contents to be placed in positions

21-35 of location Y. The channel's address counter

contents are placed in positions 3-17 of location Y. Po-

sitions S, 1, 2, 18, 19, and 20 of location Y are reserved

and their contents cannot be predicted.

Indicators. None.

Execution. The c(y) 21_35 are replaced by the con-

tents of the command counter and c(y) 3 . 17 are replaced

by the contents of the address counter. The scha in-

struction may be executed at any time, regardless of

whether the specified channel is in operation. The
command counter may contain the location of the

current command or of the next command to be
executed.

Instruction codes for other channels are:

JSTRUCTION CODE NAME
SCHB -0640 Store Channel B
SCHC + 0641 Store Channel C
SCHD -0641 Store Channel D
SCHE + 0642 Store Channel E
SCHF -0642 Store Channel F
SCHG + 0643 Store Channel G
SCHH -0643 Store Channel H

ENB- Enable from Y

+0564 F T Y
11 12-13 14 17 18-20 21

Description. When this instruction is executed, the

contents of location Y determine which signals may
cause a trap operation. Execution of each enable in-

struction cancels the effect of previous enable instruc-

tions. The channel may be disabled (traps will not

occur) by executing an enable instruction whose
operand contains a zero in the proper position.

Computer Instructions 67

Indicators. None.

Execution. Trapping signals are controlled as fol-

lows:

SIGNAL DUE TO CHANNEL EFFECTIVE IF A 1 IN POSITION

TWT Command A 0035
TWT Command B 0034
TWT Command C 0033
TWT Command D 0032
TWT Command E 0031

TWT Command F 0030
TWT Command G 0029
TWT Command H 0028

Execution of a trap inhibits all further traps until

a new enable instruction is executed or a restore

channel traps instruction is executed. Depression of

the reset or clear key or execution of an ric instruc-

tion also disables the data channel.

RICA — Reset Channel A

-K)760 1350
17 18-20 21

Z3
35

Description. This instruction, when executed, causes

all conditions in the channel to be reset. The instruc-

tion is not interlocked against channel activity. If

data transmission is taking place when an ric occurs,

validity of the data already transmitted cannot be

guaranteed.

Indicators. None.

Execution. The ric resets all conditions in the

channel to normal initial status and also sends a reset

pulse to the adapter. Modification of the address of

the ric may change the operation itself.

Instruction codes for the other channels are:

TRUCTION CODE NAME
RICB +0760-2350 Reset Channel B
RICC + 0760-3350 Reset Channel C
RICD +0760-4350 Reset Channel D
RICE +0760-5350 Reset Channel E
RICF + 0760-6350 Reset Channel F
RICG +0760-7350 Reset Channel G
RICH +0760-10350 Reset Channel H

Other Central Processing Unit Instructions

Operation of the following cpu instructions is com-
patible with operation on the 7607 Data Channel:

iot, rct, tcnx, and TCOX.

The bit and ett instructions always result in a skip,

because neither indicator is turned on by the 7909
Data Channel. For the same reason, the trc and tef
instructions never result in a transfer.

An rdc addressed to a 7909 Data Channel has no
effect. Data select instructions (rds and wrs) or non-
data select instructions (bsr, bsf, wef, rew, run, and
sdn) addressed to a 7909 cause the 7090 cpu to hang
up but have no effect on the 7909 Data Channel.

IBM 7909 Data Channel Commands

CTL - Control

17 18192021

Description. The control command is decoded in

the channel. Information contained in c(y) is sent to

the adapter, starting with the high-order character,

and continues until an end signal is received from
the adapter. If more than one word location is neces-

sary to transmit all data required by the channel, the

next word is taken from location Y+l, etc. This proc-

ess continues until an end signal is received; the next

command is then taken from the storage location

following the control command.

Execution. The contents of the address counter are

replaced by Y, and the data register contents are re-

placed by c(y). When the first data request is re-

ceived from the adapter, data register contents enter

the assembly register and the c(y+1) replace the con-

tents of the data register. The contents of the assembly

register are sent to the adapter, character by character,

beginning with the high-order character under con-

trol of the adapter. Successive words are sent to the

adapter until an end signal is received from the

adapter.

CTLR- Control and Read

Description. This command causes the channel to

transmit control information as with the ctl and
also prepares the channel for a read operation. When
an end signal is received from the adapter, the chan-

nel proceeds to the next sequential command (which

must be a copy or a tch to a copy if data transmission

is expected) . When a copy command is encountered,

the channel is placed in read status, and data are

transmitted to core storage under control of the copy
command.

Execution. Execution is the same as with ctl ex-

cept that the prepare to read indicator in the 7909
is turned on.

CTLW- Control and Write

S,l- 3 4 17 18 192021 35

Description. This command causes the channel to

transmit control information in the same manner as

68 ibm 7090

with the control command and also prepares the

channel for a write operation. When an end signal

is received from the adapter (signaling the end of

the order), the channel proceeds to the next sequen-

tial command (which must be a copy or a tch to a

copy if data transmission is expected). When the

copy command is encountered, the channel is placed

in write status, and data are transmitted from core

storage to the adapter under control of the copy

command.

Execution. Execution is the same as with ctl ex-

cept that the prepare to write indicator in the 7909

is turned on.

SNS — Sense

Description. Execution of this command places the

channel in sense status and then proceeds to the next

sequential command (which must be a copy or a tch

to a copy if sense data transmission is expected).

When a copy command is encountered, sense infor-

mation is sent to core storage under control of the

copy command.

Execution. Execution of the sns turns on a sense

indicator in the 7909, which causes the adapter to

transmit sense data. The channel then proceeds to

the next sequential command. A copy (cpyp or cpyd)

command is required to provide word count and ad-

dress information to be used in storing the sense data.

If the assembly register is filled before a copy com-

mand or a tch to a copy, a sequence check occurs.

If the assembly register is filled before a copy com-

mand is encountered, an i-o check results.

A maximum of two sense data words are available

from the adapter. Both words can be stored, or it is

possible to store only the first word by using a cpyd

with a word count of 1. The meaning of each sense

data-bit, as placed in core storage from the 7631 File

Control is:

FIRST WORD

BIT POSITION MEANING IF A 1

1 Reserved

Summary
Bits

3

4

5

Program Check
Data Check
Exception Condition

Program
Check

7

9

10

11

13

Invalid Sequence

Invalid Code
Format Check
No Record Found
Invalid Address

FIRST WORD

BIT POSITION MEANING IF A 1

15 Response Check
Data 16 Data Compare Check
Check 17 Parity or Cyclic Code

19 Access Inoperative

Exception 21 Access Not Ready
Condition 22 Disk Circuit Check

23 File Circuit Check

25 Reserved

Status Bit 27 Six-Bit Mode

28 Reserved

29 Reserved

31 Access 0, Module
Attention 33 Access 0, Module 1

Status 34 Access 0, Module 2

35 Access 0, Module 3

SECOND WORD

BIT POSITION MEANING IF A 1

1 Access 0, Module 4

3 Access 0, Module 5

Attention 4 Access 0, Module 6

Status 5 Access 0, Module 7

7 Access 0, Module 8

9 Access 0, Module 9

10 Reserved

11 Reserved

13 Reserved

15 Reserved

16 Reserved

17 Reserved

19 Reserved

21 Reserved

22 Reserved

23 Reserved

All bit positions (of both sense data words) that

are not mentioned in the preceding tables are not

used but contain zeros.

The meaning of each sense data-bit as placed in

core storage from the 7640 Hypertape control is:

FIRST WORD

BIT POSITION MEANING IF A 1

1 Operator Required

3 Program Check
4 Data Check
5 Exception Condition

7 Selected

9 Tape
10 Unit

11 Address

13 Selected Drive Not Ready

15 Selected Drive Not Loaded

16 Selected Drive File Protected

17 Operation Not Started

19 Invalid Order Code

21 Selected Drive Busy

22 Selected Drive At BOT
23 Selected Drive At EOT
25 Correction Occurred

27 Channel Parity Check

28 Code Check

29 Envelope Check

31 Overrun Check

33 Excessive Skew Check

34 Track Start Check

35 Not Used

Computer Instructions 69

SECOND WORD

POSITION MEANING IF A 1

1 Selected Drive Read a Tape Mark
3 Selected Drive in EWA
4 Not Used

5 Not Used

7 Read Section Busy

9 Write Section Busy

10 Backward Mode
11 Not Used

13 Drive Attention

15 Drive 1 Attention

16 Drive 2 Attention

17 Drive 3 Attention

19 Drive 4 Attention

21 Drive 5 Attention

22 Drive 6 Attention

23 Drive 7 Attention

25 Drive 8 Attention

27 Drive 9 Attention

Remaining bits do not concern the programmer.

Additional details about sense data from the 7640

include:

Operator Required

This bit is set when operator intervention is required

to proceed, as in a failure to execute an instruction or

an order because:

1. Selected Hypertape drive is not ready.

2. Selected drive is not loaded.

3. Selected drive is file-protected and an attempt

to write is made.

4. The operation was not initiated.

Program Check

This bit is set when the failure to execute an instruc-

tion or an order is due to the status of the Hypertape

drive and Hypertape control that are under control of

the stored program, such as:

1. Invalid operation code.

2. Selected drive is busy.

3. Selected drive is at bot and a read backward

is attempted.

4. Selected drive is at eot and any order requir-

ing forward tape motion is attempted.

Data Check

This bit is set when an error has occurred in the

transmission of data during a read, write, or control

operation, as the result of any of the following error

conditions:

1. Correction occurred.

2. Channel parity check.

3. Code check.

4. Envelope check. This indicator turns on when:
in reading, an uncorrectable error is sensed; in writ-

ing, the failure to write a bit or bits is sensed.

5. Overrun. This indicator turns on whenever the

computer fails to send or receive a character from
the control within the allotted time.

6. Excessive Skew Check. This indicator turns

on whenever a bit or bits of a read character fail to

fall within the time allocated for that character.

7. Track Start Check. This indicator turns on be-

cause of circuit failure in a bit track.

Exceptional Condition

This bit is set when an exceptional condition occurs

during the execution of a read or write operation.

Exceptional condition does not indicate an error con-

dition. The exceptional conditions are:

1. Tape mark is sensed when reading.

2. Write operation is in progress and end warning
area is sensed.

Attention

Ten bits of sense data are used to indicate attention

for ten Hypertape drive addresses. These bits are set

whenever the corresponding drive signals attention,

that is, whenever the drive is placed in ready status

or one of the following operations is completed:

Rewind
Unload Cartridge

File Protect

Rewind and Unload
Change Cartridge
Change Cartridge and Rewind

The status data bits also indicate the address of the

last selected drive of that channel.

CPYD — Copy and Disconnect

F0
17 18-192021

Description. This command, when decoded by a

channel not prepared to read or write, causes a se-

quence check and, thus, a channel interrupt. If the

channel is prepared to read or write, this command
causes C words to be transmitted between the channel

and core storage, starting with location Y. Data trans-

mission continues until C is reduced to zero or an

end signal is received by the channel. In either case,

the channel read or write select is reset. If, while a

cpyd is being executed, an end signal is received be-

fore the count is reduced to zero, the channel read or

write select is reset, and the channel obtains a new
command from the next sequential location.

If the next command is other than a copy, the

channel executes that command. If the next command
is a copy, the channel interrupts on a program se-

quence check. The last word transmitted to storage

under cpyd control remains in the assembly register if

an end signal is received before the word count reaches

zero.

70 ibm 7090

If the count for the cpyd goes to zero before the

end signal is received, the channel initiates a dis-

connect but does not get the next sequential com-

mand until an end or unusual end signal is obtained.

In general, when operating under cpyd control, the

channel does not obtain the next sequential com-

mand until either an end (or unusual end signaling

an error) occurs. In the event of an unusual end

signal, an interrupt occurs.

Execution: Read or Sense Operation. Y replaces

the contents of the address counter. If the channel is

in prepare to read status, this condition is reset and

the adapter is signaled to begin transmission of data

to core storage. If the read or sense indicator is on

from a previous sns or cpyp, data transmission is con-

tinued under control of the cpyd. When the assembly

register is full, it is emptied into the data register

and access to core storage is requested.

As each word is placed in core storage, the address

counter is increased by one and the word counter

is decreased by one. If the word count is reduced to

zero before an end signal is received, a disconnect is

initiated, and the channel obtains its next command

when the end signal is received. If a word or partial

word has been received, it is stored. If an end signal

is received before the word count is reduced to zero,

the last word transmitted is stored and the channel

gets the next sequential command.

Execution: Write Operation. Y replaces the con-

tents of the address counter. If the channel is in pre-

pare to write status, this condition is reset and the

write indicator is turned on. The c(y) are placed in

the data register. When the first data request is re-

ceived from the adapter, the data register contents

are placed in the assembly register and the c(y+1)

replace the contents of the data register.

If the write indicator is on from a previous cpyp

command, data transmission is resumed under con-

trol of the cpyd. As each word is transmitted to the

adapter, the address counter is increased by one and

the word counter is reduced by one. Disconnect pro-

cedures are the same as for a read or sense operation.

A cpyd with a word count of zero causes a disconnect

without further data transmission.

core storage, starting with location Y. end signals

from the adapter are serviced, but the channel does

not disconnect and data transmission continues until

C is reduced to zero. The channel then does not dis-

connect but obtains the next sequential command.

If this command is a tch, tdc, or a copy, operation

is normal and data transmission is resumed. If the

next command does not satisfy these conditions, the

channel disconnects and interrupts on a sequence

error. If an unusual end occurs, the channel inter-

rupts.

Execution, end signals from the adapter are serviced

during a cpyp command. Following the end signal,

however, the 7909 signals the adapter to proceed

(write, read, or sense), unusual end conditions cause

a channel interrupt. A cpyp command may be fol-

lowed by a cpyp, cpyd, or tch or tdc to another copy

command.

Use of the cpyp in adapter operation should be

carefully controlled. A normal end should never

occur during adapter operation using a cpyp com-

mand. If word counts are not properly controlled

(that is, the total word counts of all cpyp commands

on a write operation are greater than the record

length), or if the word count is equal to the record

length and a cpyp or cpyd with a word count follows,

data will be destroyed.

Consider a single record operation on disk where

the word count of the record is 100:

CTLW DVSR Verify single record

cpyp A, , 150 Write 150 words

cpyd B, ,10 Write 10 words

When 100 words have been written, the 7631 sends

an end signal. The 7909 signals write again, and the

remaining 60 words are dumped on top of the first

100. The remaining 40 (of the original 100) are

replaced with zeros and no errors are indicated. This

condition is possible on all operations except write

format. If an attempt is made to exceed the capacity

of a format track, a format check results.

It is generally desirable to follow with a write

check operation all write operations using cpyp. This

assures error detection if a data wrap-around occurs.

A routine that may be used to write and write check

is:

CPYP — Copy and Proceed

4 c F
1

Y
S,l-2 3 17 18 19 20 21 35

Description. This command, when decoded by a

channel not prepared to read or write, causes a se-

quence check and channel interrupt. If the channel

is prepared to read or write, this command causes C
words to be transmitted between the channel and

LOCATION OPERATION ADDRESS COMMENT

LCC 1

WR CTLW DVSR Verify single record

CPYP A, , 150 Write 150 words
CPYD B, ,10 Write 10 words

tdc *+2 Go to write check if

control counter not

zero

WC WTR * End of write, write

check

CTLW DWRC Prepare to write check

TCH WR+1

Computer Instructions 71

TCH — Transfer in Channel

S.l-2 3 1718192021 35

Description. This command is the transfer com-
mand for all channels. When a tch command is ex-

ecuted, command sequence control is transferred to

location Y.

Execution. When a tch command is executed, the

data channel transfers to location Y. The command
at location Y is loaded into the data channel and the

command counter is increased to Y+l.

LAR— Load Assembly Register

and brought to the data register. The command
counter is then increased by one again. The data
register contents are stored in location Y. The address

counter is increased by one and the word counter is

reduced by one. The second word is entered into

the data register from the storage location specified

by the command counter. This operation proceeds
until the word count is reduced to zero. The channel
then takes its next command from the location of the

xmt command plus C, plus one. The contents of the

assembly register remain unchanged. The xmt com-
mand may be used to move blocks of data, commands,
or entire subroutines from one area of core storage

to another area.

Description. Execution of this command causes the

contents of the assembly register to be replaced by the

c(y). The c(y) remain unchanged. After execution,

the channel proceeds to the next sequential command.
Execution. The contents of Y are sent through the

storage bus switches and the data register to replace

the contents of the assembly register.

SAR — Store Assembly Register

Description. Execution of the sar causes the c(y) to

be replaced by the contents of the assembly register.

Contents of the assembly register remain unchanged.
After execution, the channel proceeds to the next
sequential command.

Execution. The assembly register contents are stored

in location Y, as specified by the address counter, in

the same manner as for a read operation.

XMT — Transmit

"KJ

1718192021

Description. This command causes the C words im-
mediately following the location of the xmt command
to be transmitted to C locations starting at location
Y. When the C field is reduced to zero and the Cth
word has been transmitted, the channel obtains its

next command from the location of the xmt com-
mand, plus C, plus one. If the initial count field is

zero, the xmt command is skipped and the channel
proceeds to the next sequential command.

Execution. The command counter is increased by
one and the first word is obtained from this location

LCC — Load Control Counter

Description. This command causes the contents of

the channel control counter to be replaced by the
six low-order positions of the count field of the lcc
command. The channel then proceeds to the next
sequential command. If the lcc is indirectly ad-

dressed, the contents of the control counter are re-

placed by the six low-order bits contained in the lo-

cation specified by positions 21-35 of the lcc com-
mand.

Execution. The control counter is reset. The con-
tents of positions 12-17 of the address counter are

placed in positions 1-6 of the control counter. The
channel then proceeds to the next command as speci-

fied by the command counter.

TDC — Transfer and Decrement Counter

17 18-192021 35

Description. On execution of this command, the
contents of the six-bit channel control counter are

examined. If the contents are not zero, the counter
is reduced by one and control is transferred to loca-

tion Y. If the counter contents are zero, the channel
proceeds to the next sequential command, leaving
the counter contents unchanged.

Execution. If the control counter contains a count
of zero, the channel proceeds to the next command as

specified by the command counter. If the control

counter is not zero, it is decreased by one. The com-
mand counter is reset and replaced by the contents of

the address counter. The channel then takes the next
command from location Y.

72 ibm 7090

ICC — Insert Control Counter

S,l 2 3 5 6

Description. When the count field (C) of the ice

is not zero, this command causes the C field to specify

one of the six characters in the assembly register to

be replaced by the contents of the control counter.

The remaining five characters are not affected. If C
is zero, the sixth character of the assembly register is

replaced by the contents of the sms status indicators.

In either case, the channel proceeds to the next se-

quential command after execution of the ice. An ice

with a C field of seven functions as a no operation.

The contents of the assembly register remain un-

changed.

Execution. Word counter positions 3, 4, and 5 are

decoded to specify a character of the assembly register.

The selected character is reset and replaced by the

control counter if the C field is one through six or

by the sms status indicators if the C field is zero.

TCM — Transfer on Condition Met

M If
Description. When C is not zero, this command

causes C to specify one of the six characters in the

assembly register for comparison against the contents

of the mask (M) field. If a bit-for-bit comparison is

achieved, the channel executes a transfer to location

Y. If the comparison is not achieved, the channel

proceeds to the next sequential command. If C is

zero, the channel check condition register is compared
against M. Transfer conditions for the comparison

are as previously stated. When indirect addressing is

used, control is transferred to the indirectly addressed

location when the condition is met. If C is equal to

seven, the result depends on mask contents. If all

bits in positions 12-17 of the tcm are zero, the channel

executes a transfer to location Y. Otherwise, the chan-

nel proceeds to the next sequential command.

Execution. Word counter contents (position 3, 4,

and 5) are decoded to find the count. Assembly reg-

ister contents are divided into six characters with the

first character in positions S, 1-5 and the last character

in positions 30-35. If the count field is a value one

through six, one of the characters from the assembly

register (specified by C) is compared with the M
field of the tcm. If C is zero, the six-position check

condition register is compared with M. If C is seven,

a six-bit character of all zeros is compared with M.
If a bit-for-bit comparison is achieved, the channel

transfers control to location Y. The command counter

is reset and replaced with the contents of the address

counter. If a comparison is not achieved, the channel

proceeds to the next sequential command. The con-

tents of the assembly register and the check condition

register remain unchanged.

SMS — Set Mode and Select

70

Description. Execution of this command causes the

contents of positions 30-35 of this command to set

or reset specific status indicators as follows:

BIT FUNCTION

30* Read Backward
31* BCD Mode
32 Inhibit Unusual End Signals

33 Inhibit Attention 1 Signals

34* Inhibit Attention 2 Signals

35* Select 2 (1 is selected when reset)

* Optional Features

Bits 34 and 35 apply to the data channel switch feature de-

scribed in "Optional Features."

In all cases, the presence of the bit causes the status

indicator to be set and the function to be enabled;

absence of the bit resets the status indicator and dis-

ables the function. Machine and power-on resets also

reset the indicators. With indirect addressing, the

sms command status indicators are set or reset with

bits 30-35 of the location specified by bits 21-35 of the

indirectly addressed command. After execution of

the sms, the channel proceeds to the next sequential

command.

WTR- Wait and Transfer

Description. When this command is decoded, the

channel stops operation and may be thought of as

waiting. The channel location counter contains the

location of the wtr command. When the channel is

told to start, it takes its next command from the loca-

tion specified by Y of the wtr command. If an inter-

rupt occurs while the channel is in wait status, return

from the interrupt program by means of a lip com-

mand puts the channel in wait status.

Execution. Execution of this command forces the

channel to wait. The channel may be restarted by

either an rsc or stc command or by an interrupt. The
command counter is not changed, and the address

counter contains Y. If the wtr is indirectly addressed,

the address counter contains the contents of the ad-

dress portion of location Y.

Computer Instructions 73

TWT-Trap and Wait

Description. Upon decoding a twt command, the

channel suspends operation until either a reset and
start or start channel instruction is executed by the

cpu, depending on conditions described below. If the

channel is enabled for control word traps, the channel

causes the cpu to trap to a fixed location. Particulars

concerning this trap are described in "Data Channel
Trap."

If the channel is enabled and encounters a twt
command, start channel instructions are ignored until

the trap is executed or a reset and start channel in-

struction is executed, If the channel is not enabled,

either a reset and start or start channel instruction

resets the trap and causes the channel to resume op-

eration.

Channel interrupt signals are remembered but not

executed until the channel brings in a command
other than twt. (An rsc resets these stored interrupt

signals.) After the channel has stopped operation as

a result of a twt, the channel command counter con-

tains the location of that command.
Assume that B is the location where the instruction

counter contents are stored when a trap occurs on this

particular channel and that cpu control is transferred

to B+l. sub is the entry point for the subroutine that

the channel requests the cpu to execute.

COMMAND ADDRESS COMMENT
XMT B+ 1,,1 Moves the following TRA to location B+l.
TRA
TWT

SUB
Y Transfers control to CPU at location B+ l.

Execution. When the twt is decoded, the wait in-

dicator is turned on, the channel trap demand is in-

itiated, and the channel waits. The command counter
is not changed and the address counter contains Y.

If the twt is indirectly addressed, the address counter
contains the contents of the address portion of lo-

cation Y.

LIP — Leave Interrupt Program

Description. This command causes the channel to

transfer control to the location contained in the ad-

dress part of the channel's fixed "interrupt-to" loca-

tion. The channel command counter is set to the

value in the address portion of this fixed location.

Execution of the up also cancels the inhibiting effect

of a previous interrupt.

Execution. The interrupt and check condition indi-

cators are reset and the contents of the address por-

tion of the fixed interrupt-to location are entered in

the command counter. The contents of the location

specified by the command counter are loaded into the

operation register, word counter, and address counter.

The command counter is stepped to the location of

the next command.

LIPT — Leave Interrupt Program and Transfer

S, 1 2 3 17 18 192021

Description. Execution of the lipt command can-

cels the inhibiting effect of a previous interrupt and
transfers channel control to location Y. Use of the

lipt permits returning from the interrupt subroutine

to a program location other than the interrupt ad-

dress.

Execution. When an lipt command is executed, the

interrupt and check condition indicators are reset and
the channel proceeds to location Y for its next com-

mand. The command located at Y is loaded into the

channel and the command counter is increased to

Y+l.

Programming Example of lipt Command

INSTRUCTION

LOCATION OR COMMAND ADDRESS COMMENT

100 XMT RSTRT, , 1 Store return address in

101 PZE 102 indirect address re-

start location.

102 CTLR DVTN Read 30 words using

103 CPYP BEGIN, , 10 track with no ad-

104 CPYD END, , 20 dresses.

rstrt is a location used to store restart addresses.

The xmt command stores pze 102 at location rstrt.

Assume that an i-o check occurs during the cpyp com-

mand. The channel initiates a disconnect and inter-

rupts. The command counter contains 104, the loca-

tion of the next command. If the error routine

decides to try again, an lip command cannot be

conveniently used, because the channel leaves the

interrupt routine and transfers to location 104. A
sequence check would occur followed by another in-

terrupt.

If the interrupt routine is ended with an indirectly

addressed lipt command (lipt rstrt,4), rather than

a lip, the channel returns to the ctlr command and
retries the failing section of the program.

74 ibm 7090

IBM 7909 Data Channel Command Bit

Configurations

Command

CTL Control

CTLR Control and Read

CTLW Control and Write

SNS Sense

LAR Load Assembly Register

SAR Store Assembly Register

TWT Trap and Wait

LIP Leave Interrupt Program

TDC Transfer and Decrement Counter

LCC Load Control Counter

SMS Set Mode and Select

WTR Wait and Transfer

XMT Transmit

TCH Transfer in Channel

LIPT Leave Interrupt Program and Transfer

CPYP Copy and Proceed

CPYD Copy and Disconnect

TCM Transfer on Condition Met

ICC Insert Control Counter

IBM 7631 File Control Order Bit

Configurations

2 3 4 5 8 9 10 11

10 10 10 10
10 10 10
10 10 10
10 10 10 1

10 10 10
10 10
10 11
10 10
10 10 1

10 110
10 111
10 10
10 10 1

Num
Code Order

00 DNOP No Operation

04 DREL Release

08 DEBM Eight-Bit Mode
09 DSBM Six-Bit Mode
80 DSEK Seek

82 DVSR Prepare to Verify (single record)

83 DWRF Prepare to Write Format

84 DVTN Prepare to Verify (track with no addresses)

85 DVCY Prepare to Verify (cylinder operation)*

86 DWRC Prepare to Write Check

87 DSAI Set Access Inoperative

88 DCTA Prepare to Verify (track with addresses)

89 DVHA Prepare to Verify (home address)

* Optional Feature

IBM 7640 Hypertape Control Order
Bit Configurations

10

Numeric

Code

Mnemonic
Code Orders

00 HNOP No Operation

01 HEOS End of Sequence

02 HRLF Reserved Light Off

03 HRLN Reserved Light On
05 HCLN Check Light On
06 HSEL Select

07 HSBR Select for Backward Reading

28 HCCR Change Cartridge and Rewind

30 HRWD Rewind

31 HRUN Rewind and Unload Cartridge

32 HERG Erase Long Gap
33 HWTM Write Tape Mark

34 HBSR Backspace

35 HBSF Backspace File

36 HSKR Space

37 HSKF Space File

38 HCHC Change Cartridge

39 HUNL Unload Cartridge

42 HFPN File Protect On

Systems Program Compatibility

704 Programs on 7090 System

The compatibility n program makes possible the

execution of programs written for a 704 system on
the 7090 system. The compatibility program simulates

704 input-output operations through use of the

storage-nullification, input-output select trap, and

copy trap modes. The program requires no modifi-

cation of the 7090 on which it is used; however, it can-

not be used on a 7090 system with less than 8192 words

of core storage. Also, if the last location of a 704

high-end loader contains a copy, the instruction

counter (40000) is stored at address 40000 and the

subsequent esnt results in a halt.

Compatibility n executes a leave floating-point trap

mode (lftm) instruction before entering a 704 pro-

gram, in order that overflow will function as on a

standard 704. Computations are not affected in any

other way. The program is designed to use all of the

upper half of storage. Some of these locations are

used for storing the program itself; the rest are used

as an input-output buffer between the 704 program

and tape or card units, and, if required, for simulat-

ing magnetic drums. All locations of the upper half

of storage not used for the compatibility program in-

structions or for drum simulation are used for the

input-output buffer.

Before a 704 program can be processed, a control

card must be read. This control card indicates the

7090 equivalents of the 704 tapes used in the process-

ing of the 704 program. After the control card is read,

the compatibility program enters select trap, copy

trap, and storage nullification modes and simulates a

load card, load tape, or load drum operation depend-

ing on the setting of the console entry keys. Until the

completion of the 704 program, input-output opera-

tions are simulated through use of the select trap and

copy trap modes of operation. (All other instructions

are compatible with the 7090.)

See IBM 709 Data Processing System Bulletin,

J28-6039 for a complete explanation.

709 Programs on 7090 System

Programs written for the 709 may be run on the 7090

without modification or sacrifice in efficiency and still

take advantage of the increased system speed. There

are, however, differences which are potential areas of

incompatibility. These are:

1. Read or write drum instructions will be trapped

if an estm instruction has been executed, cpy, cad,

Computer Instructions 75

and lda instructions will be trapped if an ectm is

executed. When the instruction is not trapped, the

i-o indicator will be turned on and the instruction will

be treated as a no-operation, crt instructions may be
trapped but will always give an i-o check indication.

2. It is usually possible to simulate the drum on
the 7090 system by using the 704 compatibility fea-

ture. If, however, the 709 program uses data chan-
nel traps, difficulty may be encountered if traps occur
while the compatibility program is being executed.

This will result in returning control to the 709 pro-

gram without allowing the 7090 to set proper operat-

ing modes.

3. The change in the ratio of compute speed to

input-output speed will affect programs that depend
upon computed delays for satisfactory operation.

Since the 7090 is faster than the 709, difficulty will

occur only in cases where "shrinkage" of a delay loop
can cause trouble. For instance, a program may as-

sume that certain storage locations may be changed n
machine cycles after a write tape instruction. Thus,
if that area is used without making a test, the 709 and
7090 may not write the same data.

4. To achieve compatibility, the 7090 system must
have the same complement of data channels, tape

units, and card equipment. Further, these units must
be arranged in the same way with regard to address-

ing.

5. Since magnetic tape may be recorded at two den-

sities on the 7090, provision must be made to set up

the tape units for the particular density required. This
may be done by use of the change density switch
located on each tape unit or by the sdn instruction.

7090 Programs on 709 System

To run a 7090 program on a 709, the same general
precautions observed with a 709-to-7090 program
must be used. Instructions pertinent to the 7090 only
(instructions referring to channels G and H) will

cause the 709 to hang up.

Inasmuch as the computed delays will be much
longer when 7090 programs are run on a 709, trouble
will be encountered whenever some critical timing
may not be exceeded. For example, if the maximum
allowable number of 7090 instructions are executed
between select and reset and load instructions, an i-o

check will result when this program is run on the 709.

This is essentially the inverse of the problem en-

countered when 709 programs are run on a 7090.
Again, the size and configuration of the systems must
be the same. It is possible, however, to write pro-
grams for 7090 systems which are not attainable with
the 709. This will occur because a 7090 data channel
has more than eight tape units, the 7090 system uses

channels G and H, and card equipment on the 7090
may appear on channels B, D, or F.

Since the 709 does not have dual-density tape units,

all programs will produce low density tape as output
and must have low density tape as input.

76 ibm 7090

Interrupt

The 7909 Data Channel is capable of interrupting

its stored program independently of the main com-

puter and other data channels. This operation is

separate and distinct from a data channel trap —

which interrupts the cpu — and represents another

significant departure from 7607 Data Channel opera-

tion. On recognition of an interrupt condition, the

7909 channel stores the contents of the command and

address counters in a fixed location and then executes

the command located in another fixed location. This

process is termed interrupt.

If the 7909 channel is to be diverted from normal

command execution sequence, the command in the

fixed location must be one that will change the con-

tents of the command counter (tch, lipt, or success-

ful tdc or tcm) . If this command is other than a

successful transfer, the channel executes it and re-

sumes operation at the location immediately following

the location where the interrupt occurred. If the

command at the fixed location is a wtr or twt, the

channel suspends operation as described in the chan-

nel command section, but the command counter

contains the location plus one of the command re-

sponsible for the interrupt. The channel interrupt

locations are assigned as follows:

STORE OBTAIN

CHANNEL COMMAND COUNTER AT NEXT COMMAND FROM

A 00042 00043

B 00044 00045

C 00046 00047

D 00050 00051

E 00052 00053

F 00054 00055

G 00056 00057

H 00060 00061

When the 7909 interrupts, the command and ad-

dress counters are automatically stored in the assigned

fixed core storage location. The address counter is

stored in positions 3-17 and the command counter in

positions 21-35 of this location.

Interrupt conditions are stored in a six-position

register in the data channel and may be examined

with the tcm command. Any combination of inter-

rupt conditions causes an interrupt; however, once

interrupted the channel is placed in interrupt mode
and further attempts to set the interrupt condition

or to interrupt are inhibited. The channel remains

in interrupt mode until an lip or lipt command is

executed by the channel or an ric instruction is ex-

ecuted by the cpu. If a channel is in interrupt mode
and an rsc instruction is executed by the cpu before

the channel executes a lip or lipt command, the in-

terrupt condition register is reset but the channel

remains in interrupt mode. An lip or lipt command
or a ric instruction is the only program means avail-

able to cause the channel to exit from interrupt mode
and become receptive to further interrupt conditions.

Interrupts are also inhibited if channel trap is in

process on that channel. This inhibiting persists until

either an rsc or stc instruction (depending on wheth-

er the channel was enabled) is executed by the cpu

(see "twt Description")

.

Interrupt Conditions

Interrupt indications are stored in a six-position reg-

ister in the data channel. The contents of this regis-

ter may be examined by the tcm command. The posi-

tions of the register and the conditions they reflect are:

POSITION CONDITION

1 Input-Output Check
2 Sequence Check
3 Unusual End
4 Attention 1

5 Attention 2

6 Adapter Check

Input-Output (l-O) Check

This condition occurs when the channel fails to ob-

tain a storage reference cycle in time to satisfy de-

mands of the attached i-o device. The condition is

also monitored in the cpu and reflected by the i-o

check light. The condition of the light may be tested

by the cpu, using the iot instruction. The input-out-

put test (iot) instruction execution turns the i-o

check light off in the cpu but will not affect the 7909

i-o check indicator. The channel i-o check idicator is

turned off when an lip or lipt command is executed

or when the cpu executes an rsc or ric instruction.

The channel i-o check indicator being on indicates

one of the following conditions:

1. During a write or control operation, the channel

data register has not been loaded with a word from

Interrupt 77

core storage by the time its contents are to be sent to

the adapter.

2. During a read or sense operation, the channel
data register has not been stored by the time new data

are completely assembled in the assembly register.

When an i-o channel check occurs, the adapter is

disconnected and an interrupt occurs when the end
signal is received from the adapter. The command
counter contains the location plus one of the present

command. The address counter contains the location

plus one or two of the last word transmitted if the

operation was a write or control, or the location plus

one of the last word transmitted if the operation was
a read or sense.

If an i-o check occurs while the channel is in inter-

rupt mode, the i-o check is not recognized and is not
saved.

Sequence Check

A sequence check indicates an invalid sequence of

channel commands. Improper command sequences

occurring while the channel is in interrupt mode may
cause the 7909 to hang up. If a sequence check occurs

during data transmission, the adapter is logically dis-

connected and the interrupt occurs when the end sig-

nal is received. In general, data transmission (read,

write, or sense operations) may be started by one of

the following sequences: a ctlr followed by a cpyp, a

ctlw followed by a cpyp, or an sns followed by a

cpyp. Once transmission has been started with a

cpyp, it must be ended with a cpyd. Between the first

cpyp and the cpyd, transfers are possible but only

three commands (cpyp, tch, or tdc) are permitted.

The following conditions cause a sequence check
and a channel interrupt:

1. If a ctlw, ctlr, or sns is followed by ctl, ctlw,
CTLR, WTR, TWT, or SNS.

2. If an sns or cpyp is followed by any command
other than a cpyp, cpyd, tch, or tdc.

3. If a tch or tdc following an sns or cpyp trans-

fers control to any command other than a cpyp, cpyd,
tch, or TDC.

4. If a cpyp or cpyd has not been properly pre-

ceded by a ctlw, ctlr, or sns.

Unusual End

An unusual end indicates an error condition recog-

nized by the adapter. This condition causes an im-
mediate interrupt. The reason for the unusual end
may be determined by sensing the adapter error indi-

cators (see "sns — Sense Command").

unusual end interrupts may be disabled by the sms
command with a 1-bit in position 32. If unusual end
signals are inhibited and an unusual end is received,

it is treated as a normal end but the unusual end indi-

cator is set. A later sms with a 0-bit in position 32

does not reset the indicator and, if not reset by other

means — such as an lip or lipt command or an ric

instruction — the next end signal (normal or unusual)

received from the adapter causes an interrupt.

If an i-o, sequence, or adapter check occurs during
a data transmission operation, the operation is imme-
diately ended with a stop signal and an interrupt

occurs when the end signal is received. If an unusual
end occurs when transmission is ended, this condition
is recognized. The channel does not interrupt twice

but has both error indications available for examina-
tion during the interrupt routine. Data read or writ-

ten during an operation that ended with an interrupt

may be incomplete or invalid.

Attention Conditions

This is a signal indicating a change in status of the

attached input-output device. During disk operations,

an attention signal is generated when an access mech-
anism has completed a seek operation. The particular

access mechanism that generated this indication may
be determined from sense data.

The single attention indicator in the adapter, com-
mon to all access mechanisms, is reset when the 7909
interrupts. The individual access bits are reset by
giving a read, write, or control command to the in-

dividual access address.

There are two attention indicators in the 7909. At-

tention 1 indicates a signal from the device attached

to position 1 of the data channel switch feature; at-

tention 2 indicates a signal from the device attached

to position 2.

Either or both attention interrupts may be disabled

with the sms command. If attention interrupts are

inhibited, the status indicator is set but no interrupts

occur and no attention response is sent to the adapter.

When an sms that enables an existing attention indi-

cator is executed, the interrupt occurs at termination

of the sms, and the attention response is sent to the

adapter.

Attention interrupts are serviced only at the logical

termination of the command during which they occur.

The logical termination of a read or write operation

is the disconnect resulting from a cpyd. Attention sig-

nals occurring while the channel is in interrupt mode
do not set the status indicators; however, a second
interrupt, to service the adapter attention signal,

occurs as soon as the channel leaves the interrupt

78 ibm 7090

mode. In this case, the channel executes the com-

mand following the lip or lipt command before in-

terrupting on the second attention signal.

Adapter Check

An adapter check indicates an error recognized by the

7909 and does not necessarily indicate an adapter

malfunction. Conditions causing an adapter check

are:

1. Circuit failure occurs in the 7909 assembly ring

or character ring (Figure 62).

2. The character rate of the attached i-o device ex-

ceeds the capability of the channel.

3. The adapter is not operational. This type of in-

dication occurs if power is off on the adapter and an
attempt is made to read, write, control, or sense. On
shared disk storage systems, this indication occurs if

an attempt is made to read, write, control, or sense

and the adapter is in operation on the sharing system.

If an adapter check occurs while the adapter is se-

lected, the adapter is logically disconnected and the

interrupt occurs when the end signal is received.

Interrupt 79

Input-Output Components

Magnetic Tape Units

As many as ten ibm 729 II, IV, V or VI Magnetic Tape
Units can be connected to each 7607 Data Channel on
the 7090 system. Tape units may be intermixed, as

to type, on the 7090 without addressing changes.

Character Alteration in BCD Mode

As six-bit bcd characters are read from magnetic tape,

the zone bits of some of the characters are altered.

This alteration is performed so that the digits 0-9 and
the characters A-Z are represented in core storage by

six-bit binary numbers of increasing magnitude. The
alteration of these zone bits is:

IN CORE STORAGE ON TAPE
CHARACTERS B A B A

Numeric
A to I 1 1 1

JtoR 1 1

StoZ 1 1 1

The digits 1 through 9 are represented by the six-

bit binary numbers 000001 through 001001; that is, by

their exact values as binary integers. Thus, the zone
part of the digits is 00. The number zero is repre-

sented on magnetic tape by the bit configuration

001010. This representation is automatically altered

to 000000 during reading in the bcd mode.

During writing in the bcd mode, the alteration pro-

cedure is reversed so that the storage bcd characters

are transformed to the bcd tape format by the tape

control. In writing, the tape control automatically

performs the modifications described but does not

check whether the six bits being transmitted form a

legitimate bcd character. Thus, if binary numbers
are written in the bcd mode, both a pure zero and the

number 10 (001010) are recorded on the tape as the

bcd zero character (001010). Also, the integer 15

(001111) is identical to the bcd tape mark, signifying

an end-of-file condition. Therefore, random binary

data should not be recorded in the bcd mode.

In addition to alphabetic and numeric characters,

the bcd format provides for punctuation marks and
other special characters. Included is the bcd character

"blank," which suppresses printing or punching in

any desired position during auxiliary operations.

Detailed magnetic tape unit descriptions are in the

Reference Manual, IBM Magnetic Tape Units, Form
A22-6589.

Disk Storage

The ibm 1301 Disk Storage and ibm 7631 File Control

(Figure 60) are available as an optional feature on
all ibm 7090 Data Processing Systems. As many as five

Figure 60. ibm 1301 Disk Storage

80 ibm 7090

disk storage units may be attached to one or two file

control units. The 7631 is available in four models:

Model 1: Used with 1410 Data Processing Sys-

tems.

Model 2: Used with 7070, 7074, 7080, 7090, and

7094 Data Processing Systems.

Model 3: Used when disk storage is to be shared

by a 7000 series system and a 1410

system.

Model 4: Used when disk storage is to be shared

by any two 7000 series systems.

Disk storage units may be attached to a 7090 sys-

tem as shown in Figure 61. Other arrangements may
be made by using two file control units and two 7909

data channels. For example, three disk storage units

may be attached to one file control (and its 7909 data

channel) while one or two disk storage units are

attached to another file control and its 7909 data

channel. Normal data channel addresses are used

and, therefore, no more than eight data channels

(7607 and 7909) may be used with any one 7090

system.

Each of the five possible 1301 units may have two

modules. Within a 1301, the lower module is num-
bered and the upper module is numbered 1. To the

computer, the ten modules are numbered through 9.

The access mechanism of each module is numbered 0.

A combination of these two numbers is used to select

a module and an access. For example, the upper mod-
ule of the third 1301 in a system is addressed by the

number 05.

In writing a format track, inter-record gaps are 12

characters long. On the format track, address and

data areas must have the exact character count that

will be recorded in the data area, because zero char-

acters are written on the data track for every unused

character position on the format track.

Data leave and enter the ibm 7090 as six 6-bit char-

acters in both six-bit or eight-bit mode. When the

system is writing in eight-bit mode, two zero bits are

added to each character as it is recorded on the disk

surface. When the system is reading in eight-bit

mode, the same two bit positions are dropped in the

data channel and only the six-bit character is read

into storage.

Transmission of data to and from disk storage is

accomplished by data channel commands. Data trans-

mission is similar to that used by the 7607 channels,

except that read and write operations are decoded in

the 7909 channel rather than in the central processing

unit. Disk control operations that do not require data

transmission are accomplished by sending an order to

the file control, where it is decoded and executed. A
complete description of these orders and their opera-

tion is in the General Information Manual, IBM 1301

Disk Storage with IBM 7000 Series Data Processing

Systems, Form D22-6576-2.

Data Flow

Figure 62 is a simplified flow chart showing 7909 Data
Channel registers and data switches concerned with

data flow.

7607 I Data Channel

Tape Card
Units Equipment

7100 Central Processing

Unit

7606 Multiplexor

7909 Data Channel

7631 File Control

TTTTT
1301 Disk Storage Units

7302 Core Storage

7607 II Data Channel

Tape
Units

Figure 61. ibm 7090 System with ibm 1301 Disk Storage

Input-Output Components 81

Storage Bus Switches: These 36-position switches

provide the data path to and from the 7606 Multi-

plexor for data and command entry into the 7909.

Data Register: This 36-position register is a buffer

register for data flow between core storage and the

assembly register. During a write or control opera-

tion, the data register is loaded with the next data

word to be sent to the adapter. On a read or sense

operation, the input data are kept in the data register

until the data can be placed in core storage.

Assembly Register: This 36-position register assem-

bles and disassembles data passing between the 7909

and the adapter.

Channel Address Switches: This 15-position switch

provides the 7606 with address information. The next

word needed by the 7909 is obtained by directing the

address counter to the channel address switch if data

are to be transmitted or by directing the command
counter to the channel address switch when a new
command is required.

Operation and Control Registers: During a com-

mand word cycle, the storage bus switches are directed

to the operation register, word counter, and address

counter. Positions S, 1, 2, 3, and 19 enter the opera-

tion register. These five bits are decoded and pro-

vide the 7909 with its next command. Positions 21-35

enter the address counter. During data operations,

the address counter contains the location of the next

data word. During transfer type commands (tcm,

tdc) , the address counter contains the location of the

next channel command. Positions 3-17 enter the word
counter, which is used to control the number of words

passed between the 7909 and core storage.

Command Counter: The 15-position command
counter contains the location of the next 7909 com-

mand. The first operation performed during all com-

mand execution—except wtr and twt—is to step the

command counter to the next sequential command lo-

cation. The command counter is reset and reloaded

by execution of an rsc, tch, lip, lipt, or successful

tcm or tdc command.
Character Ring: The character ring completes a

cycle for each character transmitted. Its main use is

to synchronize character-bit transmission.

Assembly Ring: The assembly ring is a character

counter and gates data into or out of the assembly

register as required. During data operations, data are

sent to or received from the adapter, one 6-bit char-

acter at a time, through the character switches.

IBM 7909 Data Channel Switch Optional Feature

The ibm 7909 Data Channel Switch permits simultan-

eous attachment of one or two input-output control

units to one 7909 Data Channel. One ibm 7631 File

Control and one ibm 1414-6 Input-Output Synchro-

nizer may be attached to one data channel as shown
in the flow chart:

IBM 7909 Data Channel

Position 1 Position 2

IBM 7631 File

Control

IBM 1414-6

Input - Output

Synchronizer

7606 MULTIPLEXOR

r

Storage Bus

Switches

Channel Add

Switches

ress

4 \ A I

* r * * * > r

Character

Ring

Data

Register

Operation

Register

Word

Counter

Address

Counter

Command
Counter

i

1
i

' ^ f

Assembly

Ring ^
Assembly

Register

Control

Counter

7909 DATA
CHANNEL

y

Character

Switches

y

INPUT-OUTPUT ADAPTER

Figure 62. ibm 7909 Data Channel Data Flow

82 ibm 7090

When the 7909 is equipped with the channel

switch, data transmission occurs between the 7909 and

one of the control units. Attention signals, however,

are monitored from each control unit simultaneously.

The 7909 is then able to select the control unit and

determine priority of attention requests by means of

its own stored program.

unusual end and i-o check signals apply only to

that control unit currently selected. Indicators are in-

cluded to record attention signals from the non-

selected control unit and to denote which control unit

is currently selected. Attention interrupts occur on

signal from either or both of the control units and

are subject to the same limitations (described earlier)

as without this feature.

IBM 7909 Data Channel BCD Translation Optional

Feature

This feature provides automatic bcd translation for

information transmitted between the input-output

adapter and the 7909 Data Channel. After execution

of an sms command (with a 1-bit in position 31) data

transfers between the 7909 and the adapter are trans-

lated as shown in the table that follows. Control and

sense data are not translated. An sms command with a

0-bit in position 31 returns data transfer mode to

binary.

This feature allows the ibm 7090 system to share

data recorded in disk storage with other systems

when using a shared disk file. Translation of data is

shown in the following table with the characters di-

vided into their bit configurations; each character is

shown as it appears in core storage and on disk

storage:

Core Storage Disk Storage

B A 8 4 2 1 B A 8 4 2 1

10 10
1 1 10
(other) (no change)

1 (any 1 1 (no change)

1 (any) 1 (no change)

1 1

1 1 (other) 1 (no change)

With the translation feature enabled, binary data

may be written in bcd format and recovered by read-

ing in the bcd mode.

Home addresses and record addresses may be writ-

ten using bcd format. This automatically provides the

bcd format required in all address areas. Note, how-

ever, that subsequent attempts to verify an address

written in bcd format will fail unless the adapter or-

ders are program-modified to conform to disk storage

bcd codes. Information sent to the adapter during a

control operation is not translated whether in bcd

mode or not. This is a restriction only where portions

of the address are alphabetic characters. Numeric ad-

dresses must always be expressed in bcd format.

IBM 7340 Hypertape Drive

The ibm 7340 Hypertape Drive (Figure 63) , with the

ibm 7640 Hypertape Control, introduces a new con-

cept in magnetic tape devices. Advantages of the 7340

tape system are:

Character Rate: As many as 170,000 alphameric

characters or 28,330 words per second.

Reel Capacity: In some applications, more than

twice that of 729 iv reels (recorded at high density)

even though a reel of 7340 tape is 600 feet shorter.

Cartridge: Machine and file tape reels contained in

a cartridge; result is faster loading and unloading of

tape without manual threading of the tape.

Read Backward: Allows a recorded tape to be read

backward and eliminates necessity of a rewind opera-

tion between successive reads of the same recorded

tape.

Faster Access: Average access to records in 4.2 milli-

seconds.

Figure 63. ibm 7340 Hypertape Drive

Input-Output Components 83

Checking: Automatic detection of all data errors.

Automatic correction of all single-bit errors and most

double-bit errors.

File Protection: Cartridge file-protect device under

program control.

A tape character consists of the information record-

ed in a bit-wide column across the ten tracks, perpen-

dicular to the edges of the one-inch tape used by the

ibm 7340 Hypertape Drive. When the 7340 is used

with the 7090 system, eight of these tracks are used,

six for data recording and two for error detection and

correction. The remaining two tracks are not used

with the 7090 system. Tape track assignments on the

7340 for both bcd and binary codes are:

BCD Code iinary Code

)
Check I[CO CO CO CO CO CO col Check

/ Bits LCI CI CI CI CI CI CI J Bits /

\ Not used r— "1 Not used I

\ with 7090 t— —
J with 7090)

fB s 6 12 18 24 30'

A 1 7 13 1-9 25 31

\ Data 8 2 8 14 20 26 32 Data)

/ Bits] 4 3 9 15 21 27 33 Bits /

2 4 10 16 22 28 34

Li 5 11 17 23 29 35

Complete operational characteristics of both the ibm

7340 Hypertape Drive and ibm 7640 Hypertape Con-

trol are in the IBM 7340 Hypertape Drive Reference

Manual, Form A22-6616.

The ibm 7340 Hypertape Drive and ibm 7640 Hy-

pertape Control are attached to the 7090 System as

shown in Figure 64. The 7909 Data Channel is a

single-channel device, while the 7640 control is a two-

channel device; therefore, simultaneous read-write op-

eration requires that the 7640 be attached to two

7909 Data Channels. As many as ten 7340 drives may
be attached to each channel of the 7640, making a

possible total of 20 drives per 7640 control.

IBM 7606

Multiplexor

|
1

> r > '
y r

IBM 7909

Data Channel

IBM 7909

Data Channel

IBM 7607

Data Channel

-} j-
1

,
f

IBM 7640

Control

IBM 729

Tape Units

and Card

Equipment
\

1 1

r
> f

IBM 7340

Drive

IBM 7340

Drive

Figure 64. ibm 7090 System with ibm 7340 Hypertape Drive

Tape Motion and Markers

A single capstan moves the tape forward or backward

at 112.5 inches per second. Rewinding occurs at 225

inches per second with tape in the vacuum columns.

Three markers appear on the tape to set off the

recording area from the physical ends. About 25 feet

from the physical beginning of tape is a marker called

the beginning of tape (bot) . The bot is adjacent to

the machine edge of the tape.

About 25 feet from the physical end of tape is an-

other marker called the end of tape (eot) . The eot

is the same size as the bot but is located midway be-

tween the edges of tape. Tape motion stops immedi-

ately when the machine detects the eot.

Because the 7340 cannot move tape forward past

the eot, a third marker, called the end warning area

(ewa) marker precedes the eot on tape by about 40

feet. The ewa marker is located adjacent to the edge

of tape nearest the operator. When tape is being writ-

ten, detection of the ewa does not stop tape motion

but signals the end-of-tape condition.

Optional Features

Two optional features are available for use on the

ibm 7909 Data Channel.

Read Backward Character Assembly and Storage

facilitates processing of data received from a recorded

tape being read in a backward direction by assembling

the characters in reverse order.

BCD Translation Feature accomplishes binary-to-

bcd character translation for magnetic tapes prepared

or to be used by other ibm Data Processing Systems

employing ibm 7340 Hypertape Drives.

Automatic Cartridge Loader Feature

The Automatic Cartridge Loader Feature may be used

with the ibm 7340 Hypertape Drive (Figure 65) . The
automatic cartridge loader attaches to the top of the

7340 Hypertape Drive. The 7340 operator's control

panel is repositioned to the top-front of the loader.

The combined height of the two units approximates

that of an ibm 729 Magnetic Tape Unit. With the

loader installed, the two units act as one in all opera-

tions involving the loading and unloading of car-

tridges. The loader provides two additional cartridge

positions for a total of four.

The four cartridge positions are:

Load Storage: A receiving station for all cartridges

to be processed.

Discharge Storage: An eject station. The unload or

change cartridge operation moves processed cartridges

to this position. Processed cartridges are removed from
this position by the operator.

84 ibm 7090

Processing (or Loaded): The normal 7340 process-

ing position. Reels are engaged in the drive hubs and

tape is in the columns.

Unload (or Ready to Load): The unload or the

ready to load position. Tape is out of the columns

and the reels are disengaged from the drive hubs.

Operations

The cartridge loader automatically:

1. Unloads a cartridge from the unload position.

2. Loads a cartridge into the ready-to-load position.

3. Performs an unload-load sequence cycle. It un-

loads and moves a used cartridge to the discharge stor-

age position, and takes the next cartridge from the

load storage position and loads it into the processing

position. The complete unload-load cycle time is

about 30 seconds.

Operation of the Automatic Cartridge Loader Fea-

ture will be controlled by ibm programs supplied with

the 7340 Hypertape Drive used with the ibm 7074,

7080, 7090, and 7094 Data Processing Systems.

Figure 65. Automatic Cartridge Loader with ibm 7340 Hyper-

tape Drive

A door in front of the loader provides access to the

load storage and discharge storage position. The op-

erator may open the door to remove or insert a car-

tridge while Hypertape is being processed, without

interrupting processing. Opening the door during a

change-cartridge operation stops the action, which is

resumed when the door is closed.

Additional information is available in the IBM
7340 Hypertape Drive Bulletin, Form G22-6667.

IBM 1414 Model 6 Input-Output

Synchronizer

The ibm 1414-6 Input-Output Synchronizer connects

communication-oriented and paper tape devices to

the 7090 System. Attachment to the 7090 is through

the ibm 7909 Data Channel. Units that can be at-

tached with the 1414-6 are (Figure 66) :

ibm 1009 Data Transmission Unit

ibm 1011 Paper Tape Reader

ibm 1014 Remote Inquiry Units

Telegraph Input-Output Units

Six 80-character buffers, each assigned to a specific

input-output device, are contained in the 1414-6. The

buffers store up to 80 bcd characters and have an aver-

age data transfer rate of 1 1 microseconds per character

to and from the 7909. The buffers are under 7090

program control and use normal interrupt procedures.

IBM 1009 Data Transmission Unit

The 7090 System, equipped with an ibm 1009 Data

Transmission Unit, may function as a data processor

and as a data transmitter or receiver. The 1009 unit

allows not only two-way communication between two

remote 7090 Systems, but also between a 7090 and an

ibm 7701 or 7702 Magnetic Tape Transmission Ter-

minal, an ibm 1013 Card Transmission Terminal, or

another ibm system (1400-7000 Series) equipped with

a 1009 Data Transmission Unit.

The 1009 Data Transmission Unit has four possible

data rates: 75, 150, 250, or 300 characters per second.

One 1009 may be attached to the 1414-6 input-output

synchronizer and uses two of the six input-output

buffers. A detailed description of the 1009 is con-

tained in the General Information Manual, IBM 1009

Data Transmission Unit, Form D24-1039.

IBM 1011 Paper Tape Reader

The ibm 1011 Paper Tape Reader is an input device,

controlled by the 7090 program in the same manner

as other devices attached through the 7909 Data Chan-

nel. The reader operates at 500 paper tape characters

Input-Output Components 85

per second, using either five-track telegraph or eight-

track ibm tape. The tape can be chad or chadless and
in the form of strips, reels, or rolls to be fed from the

center.

The 1011 Paper Tape Reader uses one of the six

buffers for its operation. One 1011 reader may be at-

tached to the 1414-6. A detailed description of the

1011 is contained in the General Information Manual,
IBM 1011 Paper Tape Reader, Form D24-1044.

IBM 1014 Remote Inquiry Unit

The ibm 1014 Remote Inquiry Unit, with typewriter

input and output, may be used as a means of system

interrogation. The 1014 provides a visual record of

information stored in or transmitted from the 7090

System. Remote inquiry provides direct access to any

record stored within the 7090 System and furnishes

a printed output under program control. The 1014

has a maximum data rate of 12i/
2 characters per sec-

ond for inquiry request and 15i/£ characters per sec-

ond for inquiry reply, with as many as 78 characters

per message on input-output operations. The first

position of the buffer contains the identification of

the 1014 being used. The position adjacent to the

last inquiry character is a group mark (+)

.

The 1414-6 may have one or two channels (adapters)

for attachment of 1014 units. Each channel uses two
of the six buffers, one for input and the other for

output. As many as ten 1014 remote units are con-

trolled by each adapter. However, only one 1014 per

adapter may be in operation at one time. The ad-

dress of the specific 1014 (0-9) is placed in the first

position of the buffer.

The remote inquiry units are cable-connected to

the 1414-6 and can be located 8 wire-miles away from

IBM 7090 DATA PROCESSING SYSTEM

7909 Data Channel

(Position)

1414-6 Adapter s' f f \ \
s^

Max of 25 Ft

L_
-Character Buffers

I L
IBM 1414-6 INPUT-OUTPUT SYNCHRONIZER

10

I'll Device Adapters '

14 I 11 I 15 I 12 I 16 I 20 I

J I

24 60

Max of 250 Ft Each
'

Tel

Rec Tel

Tran

Tel

Rec Tel

Tran

Tel

Rec

Max 60 Ft
3

I

JL
64

1009

Max 50 Ft
4

_L
61 65 70

Receptacle

Tel

Tran

Y
"

Maximum of Four

1 , I

1 1 1

1

J
Data

Set

• COMMON CARRIER SYSTEM

Use

Max of

Six

Max 90 Ft
*

Receptacle

To as

many as

Ten 1014'S

(max of

8 wire-

miles to

each)

'J I

To as

many as

Ten 1014 1

(max of

8 wire-

miles to

each)

S I 1011

Notes

1. Data Transfer Rate— 11 Microseconds/Character
2. Maximum Data Transfer Rate— Up to 10 Characters/Second
3. Possible Data Transfer Rates—75, 150, 250, 300 Characters/Second
4. Maximum Data Transfer Rates— 12- 1/2 Characters/Second (Inquiry Request)

15-1/2 Characters/Second (Inquiry Reply
5 . Data Transfer Rate—500 Characters/Second

6. One unit must be input and one unit must be output

Figure 66. Configuration of the ibm 1414-6 and Telecommunications Devices

86 ibm 7090

the system. (A wire-mile is a parallel set of four wires,

or two pairs of wires, one mile long.) For a detailed

description of the remote inquiry unit, refer to the

"M" Bulletin, IBM 1014 Remote Inquiry Unit, Form

G24-1444.

automatically inserted characters. The output mes-

sage is brought from core storage to the buffer of the

1414-6, translated into telegraph code, and sent to the

selected telegraph unit when the line is ready to re-

ceive it.

Telegraph Input-Output

As many as four telegraph units 1 may be attached to

the 1414-6 to communicate with remote input-output

telegraph units. The data transmission rate of these

connections can be up to approximately ten charac-

ters per second, depending on the transmission rate of

the common carrier equipment used. The number of

buffers used for telegraph communication equals the

number of attached input and output units.

In receive operation, the telegraph units communi-

cate with the 1414-6 by means of five-bit telegraph

code. The 1414-6 translates this into standard bcd

characters. The telegraph message is divided into two

parts, the administrative portion (destination, send-

ing station, date, time, and so on) and the data por-

tion (body of the message) . The data portion to be

stored in the 7090 must be enclosed by parentheses. It

should not exceed eighty bcd characters. With normal

input-output programming, the possibility of the data

channel being occupied with disk records or the possi-

bility of combinations of other priority-sequenced op-

erations makes it impossible to insure that subsequent

buffer-loads of input characters will receive computer

attention within the 100 milliseconds (time between

characters) allotted for servicing the buffer after it is

filled. Therefore, it is strongly recommended that

data portions (to be stored) be limited to 80 charac-

ters.

The 1414-6 stores only one data portion in one

buffer-load. Any additional parenthetical sections oc-

curring within the message will be loaded in the buf-

fer only if the previous data portion has been trans-

ferred to the 7909. If disk operations on the same

channel or a combination of priorities have prevented

the transfer, the new data are not received by the

1414-6.

Before the data go to the buffer, the 1414-6 auto-

matically deletes the letters-shift, figures-shift, line-

feed, and blank characters from the incoming mes-

sage; these characters do not enter the buffer. Option-

ally, the carriage return and parentheses may be

deleted.

In transmit operation, a reverse procedure is fol-

lowed. Letters shift and figures shift are the only

Addressing of Input-Output Devices

Each of the systems adapters attached to the 1414-6 is

assigned a two-digit address to identify it to the 7090

program. The first digit identifies the type of adapter;

the second digit is the number of that particular sys-

tems adapter and indicates the read-write status. Any

combination of adapters shown in the following table

may be attached to the 1414-6, provided that the com-

bined buffer requirements do not exceed six. Possible

input-output adapters, the assigned decimal address,

and the number of buffers required for attachment

are:

Adapter Operation

Adapter

Address

No. of

Buffers

Required

Telegraph Read

Write

10, 11, 12 1

14, 15, 16
J

2, 3, or 4

IBM 1009 Read

Write

20 1

24 |
2

IBM 1014 Read

Write

60, 61 1

64, 65
J

2 or 4

IBM 1011 Read 70 1

Any combination of the above adapters may be

attached to the 1414-6, provided the combined

buffer requirements do not exceed six.

Address Register

The address register is a two-digit register that stores

the address of the selected input or output device.

The register is set as the result of a control operation

(order) or a 1414-6 internal polling operation to des-

ignate a particular device requiring service. This re-

quirement for service is called an attention. Atten-

tions are caused by one or two conditions: (1) a write

buffer becoming empty 2 (the empty buffer gives only

one attention signal 3
), or (2) a read buffer being full.

The register remains set until the input or output

1 One unit must be a transmitter and one a receiver; the other units may
consist of a transmitter-receiver, one or two receivers, or one or two trans-

mitters.
2 For 1009 write operation a delay occurs while accuracy of transmission

is checked.
3 This attention is maintained until honored.

Input-Output Components 87

line is deselected (the address register is reset) . Re-
setting the register results from:

1. End of read between the 7909 and the 1414-6

buffer (no error)

.

2. End of write between the 7909 and the 1414-6

buffer (no error) .

3. End of sense between the 7909 and the 1414-6.

4. Start of control operation between the 7909 and
the 1414-6.

If read-write operation is terminated with an un-

usual end signal, the register is not reset and the

1414-6 retains the status information that caused the

unusual end. If the program does not interrogate the

unusual condition at this time, the information is lost

when the next command takes place. While the 1414-6

is retaining status information, attention requests will

pile up, possibly leading to overrun conditions in

which input information will be lost. A sense instruc-

tion should be given immediately after an attention
or an unusual end to avoid this possibility.

For proper conditioning of the address register,

these rules should be followed:

1. A read command or a write command must al-

ways be preceded by a control command.

2. A sense command must always be preceded by an
unusual end, attention, or a control command.

3. An attention or unusual end should be immedi-
ately followed by a sense command to avoid losing

real-time data that may be waiting for attention on
another line. Also, be sure that the 7090 main pro-

gram is written so that attentions may be honored
immediately.

The control address uses the first digit to indicate

the unit and the second digit to indicate the number
of that type of unit and the read-write status. The 8

bit of the character is not used in the register. This
character bit is not needed because the range of both

unit and number is 0-7.

The sense command transfers four 4-bit bytes from
the 1414-6 to the 7090. The sense data are transmitted

to the 7090 over the A, 4, 2, and 1 bit lines. The fol-

lowing chart shows the assigned bit configuration for

the status data:

(J <u

0)

=3
E
o U .2 c

0-*E

o o c
a 3 3

; Z
U)
o

o
Da

s °
X * o

Z
>s

CO

c
o
U

o
Z

O
Z

c *5S O
z

i

A 4 2 1 A 4 2 1 A 4 2 1 A 4 2 1

Byte 1 Byte 2 Byte 3 Byte 4
- Status - -Address -

A program check is caused by selecting a write adapter followed by a read
instruction or vice versa, or giving a sense command not preceded by: (1)
a control command, or (2) either an unusual end or attention signal from
the 1414-6,

A data check is caused by either: (1) a character parity check in the
1414-6, or (2) a 1414-6 machine check.

Because of the various units involved, the bit assign-

ment of the second byte is general in nature and has
a different meaning, depending on the unit and the

type of operation performed. Figure 67 shows the bit

error assignments for the different units and opera-

tions.

Adapter

Number Device

STATUS DATA INFORMATION
A bit - Not Ready 4 bit - Busy 2 bit - Condition 1 bit - No Transfer

1 Telegraph

Read

Buffer not on line

or power off

Buffer is being

filled

Missed message No request

1 Telegraph

Write

Buffer not on line

or power off

Buffer is being

emptied

Last message in error;

not transmitted to

remote telegraph*

Last message transmitted

but received incorrectly

2 IBM1009DTU
Read

DTU not on line

or power off

Buffer is being

filled

Missed message No request

2 IBM1009DTU
Write

DTU not on line

or power off

Buffer is being

emptied

Last message in error;

transmitted to local

1009, but not to

remote 1009

Last message transmitted

but received incorrectly

6 IBM 1014

Read

Buffer not on line

or buffer power off

Not applicable Not applicable No request or buffer

being filled

6 IBM 1014

Write

Buffer not on line

or power off

Buffer being

emptied

Last message in

error; not transmitted

Last message not transmitted;

station inoperative

7 IBM 1011

Read
-

Paper tape power
off—out of tape

Buffer being

filled

Not applicable Not applicable

Figure 67. Detail Status Byte 2, Information

88 ibm 7090

IBM 7607 Data Channels INSTRUCTION

A maximum of eight ibm 7607 Data Channels (Fig-

ure 68) may be used with the 7090 system.

As many as ten ibm 729 II or 729 IV Magnetic Tape

Units, intermixed in any fashion, may be attached to

each data channel in the 7090 system. Each channel

may also have, in addition to the ten tape units, a

card reader, card punch, and a printer attached to it.

Data Channel Select Registers

When a select instruction addressing a tape, card, or

printer unit is interpreted in the cpu, it is sent to the

specified data channel for execution.

If the select instruction is a data select (read select

or write select) the instruction is placed in the chan-

nel's data select and unit registers. The operation to

be performed and the type of unit involved is placed

in the data select register. The unit number is placed

in the unit register (Figure 69). Once the specified

input-output unit has been selected, the unit register

RDS 01201

1 1 II

+ t

|

RDS Tape
|

|

1

Data Channel "A"

Data Selector Reg.

Contents retained

throughout data

transmission

operation

Data Channel "A"

Unit Register

Contents destroyed

upon acceptance

of information by

tape control unit

Figure 69. Data Channel Command Stacking

is free to accept new information sent from the main

program. The data select register, however, is used

throughout the entire input-output operation to con-

trol the data channel reading or writing activity. This

register cannot accept another data select operation

until the present operation has been terminated.

If the select instruction is a non-data select (back-

space, rewind, or write-end-of-file instruction) the in-

struction is placed in the specified data channel's non-

data and unit registers (Figure 70) . The unit register

has the same function as described for a data select.

When the data channel executes a backspace record

(bsr) , backspace file (bsf) , or a rewind (rew) in-

struction, the non-data and unit registers are used

only until the tape units have been selected. This re-

quires only a few microseconds. After this selection,

the data channel is no longer required and is free to

accept any select instruction sent from the cpu. In

the case of a bsr or bsf, the execution is completed by

the multiplexor. Any select instruction, addressing a

card or printer unit and sent to the data channel

before completion of a bsr or bsf, will be executed

immediately.

INSTRUCTION

BSR 01203

BSR

Data Channel "A"

Non-Data Register

Data Channel

Unit Register

Contents destroyed

upon acceptance

A

of information by

tape control unit.

Figure 68. ibm 7607 Data Channel Figure 70. Data Channel Command Stacking

Input-Output Components 89

The rew operation differs from bsr and bsf in that

it uses the tape control for a few milliseconds only.

The operation is then controlled by the tape unit that

is being rewound. Thus, once a rew has been started,

any select instruction which does not address the tape

unit being rewound will be executed immediately.

The wef instruction is similar to a data select in

that the specified data channel's non-data register is

in use throughout its entire execution.

The data select, non-data, and unit registers of a

channel are not directly addressable by the main pro-

gram. The registers are of importance, however, in

terms of synchronous timing relations between the

main program and the data channel operation. For
example, the outcome of the test made by a transfer-

in-operation or transfer-not-in-operation instruction

depends solely on the status of the channel's select

registers.

Data Channel in Operation

The result of a transfer in operation or a transfer not

in operation depends on the status of the channel's

select registers. If either the data select or non-data

register of a data channel is being used to hold infor-

mation, the data channel is said to be in operation.

If neither holds information, the channel is not in

operation. Assume that a rew, bsr, or bsf addresses a

channel not in operation whose attached tape unit

is also not in use. When the execution of the rew,
bsr, or bsf has been completed in the cpu and the

computer proceeds to the next instruction, the chan-

nel remains in use for three machine cycles after

which the non-data and unit registers are no longer in

use. Then a transfer in operation given before the

next select instruction will receive a negative response.

Data Channel Select Instruction Stacking

It is important in input-output programming, par-

ticularly with tape operations, to understand the in-

struction storing or "stacking" abilities of a data chan-

nel. Stacking reduces delays in the main program.
The conditions described below can occur only when
the multiple select instructions address either the

same data channel, or a data channel and a magnetic
drum.

The logical independence of each channel assures

that the status of one channel is not affected (or does

not affect) a select instruction addressing another

channel.

When a select instruction is given in the main pro-

gram and the specified data channel is not in opera-

tion, the select instruction is sent immediately to the

channel and the main program continues without

delay.

If a channel is in operation when a select is given

in the main program, the data channel either: (1)

does not permit the instruction to be sent, and the

main program is delayed until the channel is ready

to accept the instruction; or (2) accepts the instruc-

tion and stacks it in the select registers until it can- be

executed. In this case, the main program is not

delayed.

Since data select instructions use the data select

registers of the specified channel throughout the entire

input-output operation, any data select given while

another data select is in process will cause the main
program to be delayed until the prior operation is

completed.

If a data select addresses a card or printer unit, any
non-data select given before its completion will delay

the main program. This restriction is imposed so that

the unit register may be used by the plus sense (pse)

instructions used with the punch and printer units.

Any select instruction given for approximately 50

milliseconds after a wef operation has started will de-

lay the main program. This implies that no select

instruction can be stacked during this time. A wef
may be stacked, however, during the execution of

another select instruction.

If a non-data select is given by the main program
while the data select addressing a tape unit is in

operation, the non-data select will be stacked. No
delay will occur in the main program.

As previously indicated, a non-data select, with the

exception of wef, does not require the data channel
once the tape unit has been selected. Therefore, any
select instruction will be accepted by the channel if

given during the execution of a non-data select. If the

select instruction addresses a card machine or printer,

it will be executed immediately. A select instruction

addressing a tape unit will be stacked in the channel
and any third select given during this time will delay

the main program.

When a rds or wrs is stacked in the channel, its

associated reset and load channel instruction may be

executed before it is. When this occurs, the channel
command will be held until the input-output unit is

ready for transmission. This condition does not dis-

rupt the channel, the check indicator is not turned on
and no delay results in the main program.

90 ibm 7090

Programmed Channel Delay

In programming input-output activities, it is fre-

quently desirable to synchronize the testing of the

channel indicators with the i-o process. The load

channel, store channel, transfer in operation, and

transfer not in operation instructions provide flexibil-

ity in this type of programming.

A simple method which holds the main program at

a given point consists of the following. At location

Y, a transfer in operation is given the address of Y.

Thus the main program will repeatedly execute the

transfer until the specified data channel is logically

disconnected. It should be noted that a channel is

considered in operation as long as any of the select

registers contain information. For example, consider

the following sequence of instructions:

LOCATION INSTRUCTION

100
101

102

103

RTDA 1201

RCHA 0600
BSRA 1203

TCOA 0103

The bsr instruction located in word 102 will be

stacked in data channel A. The program will then

delay at location 103 until tape unit 3 attached to

data channel A has been selected.

Indefinite Delays

It is possible for a program to cause an indefinite

delay in the system as a whole or in an attached data

channel by selecting a unit not attached to the com-

puter. If a select, reset-and-load, or load-channel in-

struction addresses a channel not attached to the com-

puter or one with its automatic-manual switch set to

manual, the main program will delay indefinitely

attempting to execute the instruction. If the channel

is not attached, the select condition may be terminated

by pressing the reset key on the console of the cpu.

The computer may then be restarted. If the channel's

automatic-manual switch is in manual status, when it

is restored to automatic status a waiting select in-

struction will be executed and the program will re-

sume. However, if the waiting instruction is a reset

and load or a load channel, the input-output check

indicator will be turned on when the channel is re-

stored to automatic.

When (1) any select specifies an i-o unit which is

not attached to the channel or is not in ready status,

or (2) a wrs specifies a tape unit whose file protect

ring has been removed, the select instruction is stacked

and the channel will suspend operation indefinitely.

The main program may proceed but will be delayed

by the next select, or load channel instruction address-

ing the channel. If the specified i-o unit is not at-

tached to the channel, the select condition may be ter-

minated by pressing the reset key on the cpu console.

If the i-o unit is not ready, appropriate manual service

which readies the unit enables both the channel and

the main program to continue operation. An excep-

tion is when the i-o unit is a tape that is not ready

because it is rewinding. Upon completion of the re-

wind operation the tape unit is automatically restored

to ready status and the program proceeds.

Figure 71 has been prepared to assist the program-

mer in determining when a channel is in operation.

Tape Check Indicator

When a transfer on redundancy check is used to test

a write operation, it should be preceded by a channel

delay instruction. This insures that, when the test is

made, all bits including the longitudinal check bits

of the last record written will be checked.

If a record or records are read by any combination

of channel commands such that the operation is ended

following an end-of-record recognition (an iorp com-

mand followed by an iocd with a word count of zero)

,

a similar situation prevails. A channel delay followed

by a transfer on redundancy check provides a check

on all bits including the longitudinal check bits of the

last record read.

Select

OperaHon

Channel In

Operation Unit

Tape Unit In

Use Until

RDS Last storage reference

has been made.

End of record

WRS Longitudinal check

character is read.

End of record

WEF End-of-file gap

and tape mark with

its check character

read by the read gap

.

Same

BSR Tape control

selected.

Beginning of

record gap +

25 ms.

BSF Tape control

selected

Beginning of

file gap +

25 ms.

REW Tape control

selected

Load point.

Figure 71. Channel Delay Conditions

Input-Output Components 91

When word count control is used to govern the

reading process (for example, an iocd command with
a word count of N) a channel delay followed by a

transfer on redundancy check insures that the N words
read the lateral and that only the lateral check bits

have been checked. This is true if the record contains

more than N words. When the channel word count

register reaches zero, the channel has no way of know-
ing that it has read the last word of a record. The
channel disconnect delays until one more transmission

point has been reached or the lrcr has been read.

However, tape errors occurring in subsequent infor-

mation (N < number of words in record) , including

the lrc, will turn on the channel tape check indicator.

End-of-File Indicator

When an end-of-file occurs following an rds, the

channel end-of-file indicator is turned on and the read

operation is terminated immediately. Thus, if a chan-

nel delay is given at some point subsequent to an rds

and is followed by a transfer on end of file, the trans-

fer condition is met if the channel has been discon-

nected by an eof condition.

Such a test has validity only if this indicator is off

at the time the rds is executed by the channel, since

this indicator may also be turned on either by other

tape units or by a card reader.

Beginning-of-Tape Indicator

The beginning of tape indicator signals that a back-

space operation has been completed by reaching load

point rather than by sensing the beginning of a record

(bsr) or an end-of-file record (bsf) . The beginning-

of-tape indicator may be turned on in the following

ways:

1. When the tape is at its load point, a bsr or bsf

instruction causes the indicator to be turned on im-

mediately.

2. When the tape is positioned after any record in

the first file: (1) two bsf instructions turn the indi-

cator on if the file was preceded by an end-of-file rec-

ord, or (2) one bsf instruction turns the indicator on
if the file was not preceded by an end-of-file record.

In case 1, the first bsf positions the tape over the tape

mark in the end-of-file gap, and the second bsf returns

the tape to its load point, turning on the beginning-

of-tape indicator. In case 2, the first bsf moves the

tape backward over the file to the load point, turning
on the beginning-of-tape indicator.

3. When the tape is positioned after the first record

of the first file: (1) three bsr instructions turn the

indicator on if the record was preceded by an end-of-

file record, or (2) two bsr instructions turn the indi-

cator on if the record was not preceded by an end-of-

file record. In case 1, the first bsr moves the tape to

the beginning of the first record, the second bsr moves
the tape to the beginning of the end-of-file record, and
the third bsr moves the tape to its load point, turning

on the beginning-of-tape indicator.

To test whether a specific backspace instruction

has turned the indicator on, the instruction should be

followed by a data or non-data instruction and a

channel delay instruction (such as tcoa) before the

btt instruction is used. Once the indicator is on, it

will remain on until turned off by the execution of

the btt instruction or a manual reset. The btt in-

struction should not be used if more than one tape is

being backspaced on the same channel.

End-of-Tape Indicator

The end-of-tape indicator can be turned on only dur-

ing the execution of a wrs or wef instruction. The
specified channel remains in operation throughout

the execution of either of these instructions until the

tape unit is disconnected. Therefore, the combination
of a wrs or wef instruction, followed by a channel

delay, followed by an ett instruction determines

whether or not the end-of-tape marker has been passed

at any time prior to the writing of the terminal end-

of-record gap.

If the physical end-of-tape marker is encountered

while the tape unit is being stopped, the channel's

end-of-tape indicator will be turned on but will not be

recognized until a succeeding ett instruction is ex-

ecuted. This situation can occur when the end-of-

tape marker falls in an end-of-record gap.

End-of-File Sensing

The wef instruction writes an end-of-file gap and a

tape mark (including its check character) . End-of-

file gaps recorded with th^ wef instruction are not

checked for noise, but both the tape mark and its

longitudinal check characters are read and both are

checked laterally and also longitudinally.

The recognition of an end of file occurs with the

execution of a rds instruction when the end-of-file is

spaced over. Assuming that records and an end-of-file

have been written on a tape, a program to sense end
of file is shown in the example in Figure 72.

92 ibm 7090

ADDRESS INSTRUCTION COMMENTS

00100

00101

00102

00103

00104

00500

01000

01001

RDS 01202

RCHA 00500

TCOA 00102

TEFA 01000

HTR

IOCD 11111 05000

REWA 01201

TR

Select tape 1, channel A
Load the IOCD command

Channel delay

Transfer on EOF

Start reading into location 5000

Rewind tape 1

Transfer out

Figure 72. Program Example

With the program shown in the program example,

tape records are read into consecutive storage loca-

tions beginning with location 5000. When the eof is

sensed, the channel is disconnected and the program

executes the instruction at 00102. This instruction

loops until the channel is not in operation; then the

instruction to test for end-of-file is executed.

Blank Tape Sections

If, at the beginning of a record, no data are provided

to be written in that record, a blank section of ap-

proximately 3?4 inches will be written. When the

blank section has been written (end of record) the

channel will either proceed, transfer, trap, or discon-

nect according to the present command.

Examples are:

1. A wrs instruction not followed by an rch instruc-

tion (or followed by an rch which loads an iocd

with a word count that is initially zero).

2. An iorp or iort command with word count

initially zero that is loaded at the beginning of

a record.

3. A wrs, followed by an rch referring to an ioct

or iost command with a word count of zero. If

command trap is enabled, the trap will occur

after the blank tape section has been written

and the channel has left operation.

The blank sections of tape are always read and

checked by the read gap of the tape unit. Any noise

that is present in the section will turn the tape check

indicator on. The channel will remain in operation

in all cases until such checking has been accomplished.

To maintain compatibility with 704-type tapes, care

should be taken when information is rewritten several

times, beginning at some fixed point (other than load

point) on tape. The sequence of wrs and bsr instruc-

tions may not be repeated more than ten times. If

this limit is exceeded, the record gap preceding the

record being rewritten may be lengthened. However,

if the record preceding the one being rewritten is

always reread by the execution of two bsr's and an

rds before the rewriting, no such restrictions apply. A
file may be rewritten from a fixed point (other than

load point) only once if the sequence of bsf, wef, and

wrs is used. A wef following the bsf will result in a

longer end-of-file gap. If an rds is used to space over

the eof gap instead of the wef, the same restrictions

do not apply. If the last record of the preceding file

is read prior to the rewriting of the file, no such re-

strictions apply.

A tape may be rewritten in its entirety or from a

fixed point forward, but new records and files may not

be inserted between existing records and files.

Programmed Interruption of a Data Channel

It may be desirable during the course of a calculation

to alter or stop an 1-0 activity. If a reset and load

channel is given while an 1-0 operation is in progress,

a new command will be loaded into the channel im-

mediately, regardless of the possible loss of data. This

feature may be used to change the sequence of or to

interrupt an 1-0 operation.

A reset and load channel which loads an iocd, ioct,

or iost command with a zero word count can be used

to terminate an 1-0 operation in progress. For example,

a read operation is started by the instructions in loca-

tion 200 and 201. (Figure 73 shows all addresses and

locations in the octal system.) Fifty words are to be

read from tape unit 1 into core storage beginning with

location 800. Assuming that the read operation will

not have been completed when the reset and load

channel instruction at location 215 is executed, the

disconnect command (location 501) will be loaded

into the channel and the 1-0 operation will be stopped

immediately.

LOCATION INSTRUCTION COMMENTS

200

201

215

500

501

RDS 1221

RCHA 0500

RCHA 0501

IOCD 00062 01440

IOCD 00000 00000

Read-select tape 1 Channel "A"

Load command into Channel "A"

Load command to interrupt

Channel" A"

Figure 73. Programmed Interruption

Input-Output Components 93

If a data select instruction is being stacked when a

disconnect command is being loaded, the channel is

selected, and the execution of the disconnect com-
mand is delayed. If a non-data select instruction is

being stacked and a disconnect command is loaded,

the channel will remain in operation until the non-

data select instruction is executed.

If a store-channel is given prior to the execution

of an interrupting reset-and-load-channel, a word may
be transmitted between core storage and the i-o de-

vice before the execution of the reset-and-load-chan-

nel. This is true even if the two instructions are given

consecutively.

Data Channel Timing

Once a channel initiates a storage reference cycle, it

will continue to take such cycles until all of its re-

quirements are met. A channel will require one cycle

for: (1) each data word transmitted to or from stor-

age, (2) each additional command loaded into it, and

(3) indirect addressing of a 7090 command.
When a channel has taken the number of cycles re-

quired, a test is automatically made to determine if

any other channels require reference cycles. If so,

each channel will take, in turn, the number of cycles

each one needs.

The requirements for all channels in operation

must be met within a period of 24 cycles on the 7090.

If this number is exceeded, one or more of the chan-

nels will be disconnected and the i-o check indicator

will be turned on.

Example: Channels A and B are to be in opera-

tion at the same time. Channel A is controlled by the

sequence of commands iocp, tch, and iocd. Channel
B is controlled by the sequence of commands iorp,

tch, tch and iocd. Thus, the maximum number of

consecutive cycles that may occur is seven (three for

channel A—one data-transmission cycle, one command
cycle for the tch, and one command cycle for the

iocd—and four for channel B—one data transmission

cycle, two command cycles for the tch's, and one com-
mand cycle for the iocd) .

The maximum allowable program time (in micro-

seconds) between successive load channel instructions

for a channel using tape is given by the formula:

TLC = 2.18C (29 -M) - (7 + 6.6) on a 7090,

where:

C = word count of the command loaded by the

load channel.

M = number of consecutive cycles that may be

taken by all channels in operation.

I = 2.18 if the load channel is indirectly ad-

dressed, if not.

Example: Channel C is in operation and load-

channel instructions are to be used. The commands
to be loaded by the load-channel have a word count of

two. Further, channels A and B are operating as de-

scribed in the above example. Thus, the maximum
time which may be safely used by the main program
between successive load-channels is:

TLC = 2.18X2 (29-8)
seconds

(0 + 6.6) = 83.8 micro-

A data channel relinquishes priority between the

time the last word is transmitted by an iocp or iosp

command and the arrival of a subsequent channel

command. A store channel instruction may, there-

fore, store an address which is one greater than the

address of the last word transmitted by the iocp or

iosp command.

Magnetic Tape Timing

Since magnetic tape involves physical motion and me-

chanical drives, the variations of tape speeds and dis-

tances are large when contrasted with speeds in the in-

ternal computer.

It is recommended, therefore, that programs use the

transfer-in-operation, transfer-not-in-operation, load-

channel, and store-channel instructions in synchroniz-

ing i-o activities rather than depending on the timing

associated with physical tape motion.

With respect to timing, select instructions may be

regarded as subject to execution at four different

levels:

94 ibm 7090

1. Initially, the main program executes the select

instruction by sending it to the channel. If the

channel is not in operation, the main program

execution requires two cycles.

2. The channel is used by a data select instruction

throughout the operation and until the tape con-

trol disconnects the tape. The channel is used

by a non-data select instruction for stacking

purposes only. If the channel is free initially,

a non-data select instruction is executed in the

channel. The channel remains in use for three

cycles.

3. Except for a rewind operation, the tape control

is in use for most, and in some cases all, of the

time that the tape is in motion.

4. The time during which the tape itself is in mo-

tion is either identical to or exceeds the time in

which the tape control is in use.

Timing, Reading and Writing

Minimum and maximum times for tape operation

differ for writing and reading. During writing, time

variations are related only to the duration of the re-

cording pulses. The speed of the tape itself affects

only the distances between lateral rows as they are

recorded on the tape. During reading, however, varia-

tions in the tape drive on the reading unit as well as

those which occurred when the tape was written will

affect the time of transmission.

If the transfer-in-operation, the transfer-not-in-

operation, reset-and-load-channel, load-channel, and

store-channel are not used to synchronize i-o activities,

the following formulas are given for the purpose of

calculating the approximate tape passing time of tape

files (time in milliseconds) :

729 II and V (200 cpi)

729 II and V (556 cpi)

729 IV and VI (200 cpi)

729 IV and VI (556 cpi)

729 V (800 cpi)

729 VI (800 cpi)

= .4N + 10.8R + 53F

.15N+ 10.8R + 53F

.27N + 7.3R + 36F

.1N + 7.3R + 36F

.1N+ 10.8R + 53F

.07N + 7.3R + 36F

Where: N = total number of words in all records.

R = number of records involved.

F = number of files or file gaps involved.

Note that if the tape is positioned at its load point

when the operation is started, the beginning-of-tape

gap should be counted as an extra file gap in comput-

ing the value F.

Since a channel is always disconnected when an end

of file is sensed and may be disconnected between

records, T may represent the sum of several distinct

time intervals. During each such interval, both the

channel and the tape control, to which the tape is at-

tached, are in operation. The total time during which

a tape is in motion may or may not exceed T, depend-

ing upon the main program.

Timing, Tape Check, and End-of-File Indicators

If N in the formula for T is exactly equal to the

number of words in one or more records, the longi-

tudinal check bits of the last record will have been

read in a time not exceeding T. Discrepancies occur-

ring in or before the longitudinal check bits will have

turned on the channel's tape check indicator by T
time. Similarly, if N and jR represent exactly the num-

ber of words and records preceding an end-of-file gap,

then the expression for T with F = 1 (F = 2 if the

tape was initially at its load point) yields the time

that may elapse before the channel's end-of-file indi-

cator is turned on.

Timing, Reset and Load Channel

Once the execution of a wrs or rds instruction is begun

in a channel, a reset-and-load-channel must supply the

channel with a command before the tape is ready to

send or receive the first data word. The minimum
time within which the instruction must be given de-

pends on whether a wrs or rds is specified and the

position of the tape when selected. Time is in milli-

seconds (ms)

.

TIME WITHIN WHICH
INSTRUCTION TAPE POSITION RESET-AND-LOAD-CHANNEL

STARTING TAPE WHEN INSTRUCTION MUST BE GIVEN

MOTION IS EXECUTED 729 II, V 729 iv, vi

WRS Not at load point 4 ms. 2.7 ms.

WRS At load point 30 ms. 20 ms.

RDS Not at load point 1 ms. .7 ms.

RDS At load point 15 ms. 10 ms.

The read gap is positioned % inch behind the write

gap and must read the longitudinal check bits before

the channel can disconnect and receive a select for the

next record. During reading, the first word of the

record is sent to the channel and then to a storage lo-

cation as soon as the channel can make a storage ref-

erence cycle. During writing, however, the first word

to be written is taken from storage at the time the re-

set-and-load-channel is executed. It is held in the

channel until the tape is positioned to write the first

character of the word.

Timing for BSR, BSF, and REW

The following table may be used to assist in calculat-

ing running time involving backward movement of

Input-Output Components 95

tape. The time required to backspace the tape over a

record, file, or to rewind the tape to its load point

may be computed by adding:

1. Time to start tape moving in a backward direc-

tion,

2. Time to space the tape, and

3. Time to stop the tape.

The times, which may depend on the status of the

tape, are given below and are average times:

= .402 X number of words
.144 X number of words
.264 X number of words
.096 X number of words
.102 X number of words
.066 X number of words

(729 II and V - 200 cpi)

(729 II and V - 556 cpi)

(729 IV and VI - 200 cpi)

(729 IV and VI - 556 cpi)

(729 V - 800 cpi)

(729 VI - 800 cpi)

R = 10.8 X number of records (729 II)

= 7.3 X number of records (729 IV)

F = 40 X number of files plus 1 (729 II)

= 34 X number of files plus 1 (729 IV)

Note that F + 1 must be used for rewind to account

for the beginning-of-file gap. If a rewind is given for a

tape positioned more than approximately 450 feet

from its load point, then about 1.2 minutes are used

by the high-speed rewind operation. For a tape posi-

tioned at its load point, none of the backward moving
select instructions cause tape motion. However, they

may use the tape control from 25 to 3,000 microsec-

onds in testing the load point condition. Conse-

quently, a following tape select instruction using the

same channel may be subject to a slight delay.

Card Reader

One ibm 711 Card Reader (Figure 74) may be attached

to any channel on the system.

The 711 reads cards at a rate of 250 cards per min-

ute. Cards to be read are placed in the feed hopper

face down, 9-edge first. Information punched in the

cards may be decimal, alphabetic, binary, or any spe-

cial character code. The reading format is controlled

by the stored program and a control panel located

on the reader. With a 711 Reader attached to a chan-

nel, a 716 Printer must also be attached to the same

channel because power is supplied to both the reader

and punch from the printer.

The reading of cards is started by the execution of

an rds instruction addressing a channel and an at-

tached reader. Physical motion in the reader is started

and within 55 ms. (following the rds), a reset and
load channel instruction must supply the channel

with its first command. Any sequence of commands
calling for the uninterrupted transmission of at least

24 words causes the reading of the entire card. The
words are transmitted in the order: 9-row left, 9-row

right through 12-row right. For example, if an iocd

command with a word count of 24 is initially executed,

the 24 words are read from the card in the indicated

order and stored in 24 consecutive core storage loca-

tions beginning at the address specified by the com-

mand. After execution of the iocd command, the

channel and the reader will be disconnected. With a

word count of less than 24, only the specified number
of words is read into core storage, the channel and the

Keeping a Tape in Motion

Once started, the tape moves at a constant speed until

a channel command causes a disconnect or an eof is

encountered. The tape continues its motion to the

middle of the end-of-record gap and then stops. If a

wrs or rds for the next record has been issued by the

main program and is awaiting execution when the

tape is ready to stop, the new select instruction will

be in effect and the tape motion will continue at full

speed.

Failure to keep a tape in motion will not increase

the total running time of the program.

If the tape receives a new select instruction while

it is slowing, acceleration occurs again. The tape drive

is designed so that regardless of the tape motion when
it begins acceleration, the time taken to reach the be-

ginning of the next record is constant.

Similarly, when a tape is to stop, the time taken to

move from the end of the last record to the point on
the tape where the tape control disconnects the tape

is constant (approximately 2.5 and 4.25 ms. for the

read and write gaps, respectively)

.

Figure 74. ibm 711 Card Reader

96 ibm 7090

reader are disconnected, and the remaining words are

spaced over without being read. With a word count

greater than 24, the channel reads from successive

cards until the word count is zero. Words on a card

may be read into non-consecutive locations through

use of an iocp, ioct or other count control commands
which do not necessarily disconnect when the word

count reaches zero.

Commands specify record control functions exactly

as they do for tape records. Thus, an iorp command
with a word count of 100 reads the entire card (24

words) after which an end-of-record occurs in the

reader and the channel proceeds to its next command
in sequence. For an iorp command with a word

count of 1, the channel reads the 9-row-left word,

spaces over the remaining 23 words, and, as the card

reader end-of-record occurs, proceeds to the next com-

mand in sequence.

When the hopper of the reader becomes empty, op-

eration is suspended in the reader and channel. The
channel read-write register is in use throughout the

delay period. The main program is delayed if another

select instruction addressing the channel in question

requires execution. If additional cards are placed in

the hopper and the reader start key is pressed, nor-

mal reading will continue. If no additional cards are

placed in the hopper and the operator presses the

reader start key, the remaining cards which have not

been read (last two cards) are read in a normal

manner. If the card reader and channel are selected

after the last card is read, an end-of-file indicator in

the channel is turned on and both devices are dis-

connected.

Card Reader Timing

Note: In the following card machine descriptions, all

times shown on the timing circles are minimum times

with single-channel operation. Minimum time is de-

fined as the maximum allowable time between con-

secutive load channel instructions and includes the

time necessary for the execution of the load channel

instruction.

In continuous reading, cards are processed at a rate

of 250 per minute. The timing of a card cycle is

shown in Figure 75.

If the reader is disconnected between two cycles, the

new rds for the second cycle must be given in the

hatched portion of the cycle to insure continued read-

ing at full speed. The reader speed is constant if the

new select is given within 30 ms. following the read-

ing of the 12-row right. If the select is given between 30

and 90 ms., a delay of 60 ms. is imposed before reselec-

tion occurs. Card reader speed will be reduced to 200

cards per minute if this is done continuously.

When the select is given in the hatched portion

of the cycle, a reset and load channel must supply the

channel with its first command within 85 ms. follow-

ing the 12-row right transmission. This provides for

safe timing, as the average elapsed time between the

12-row right for one card and the 9-row left for the

next is 108 ms.

When the card reader is not in motion and the first

rds is executed, the position of the reader with re-

spect to its cycle is arbitrary. Hence a reset and load

channel must be executed within 55 ms. although the

9-row left transmission will not occur, on the average,

for 110 ms.

3 Left -i r-"U4 2 Left

1 Left

7 Left

1 1 Left

12 Left

12 Right

1—300 fis.

Figure 75. Card Reader Timing Circle

Input-Output Components 97

The times at which successive left and right words

are transmitted to storage are shown in Figure 75 by

the designations 9-left, 9-right, and so on. The mini-

mum times between word transmissions (300 pS. be-

tween left and right words and 8 ms. between the

right word of one row and the left word of the next

row) should be considered when load channel instruc-

tions are used to synchronize the cpu and the reader.

For example, assume that a reset and load channel has

supplied the dsc with an ioct command whose word

count is one. This command sends the 9-left word

from the reader, through the channel, to the location

in core storage specified by the address field of the

ioct command. The word count is reduced to zero

when the word enters storage. At this time a load

channel instruction must be waiting in the main pro-

gram. Assume that another ioct command with a

word count of one is loaded in the channel, and that

such a command is sent to the channel at every trans-

mission point. Then the times between transmission

(alternately 300 ^s. and 8 ms.) would represent the

maximum allowable times between consecutive load

channel instructions.

When the word count of an iocd command is re-

duced to zero, the reader is disconnected on what

would have been the next transmission point. A re-

set and load channel which loads an iocd, ioct, or

iost command with a zero word count may be used to

terminate an i-o operation. If the rcha is given with-

in 125 microseconds after any read-right transmission

point, or 925 microseconds after an end-of-record

point, the card reader will immediately disconnect. If

rcha is given later, the disconnect occurs at the next

transmission or end-of-record point (even if this next

point occurs on the following card).

Timing Chart

When the reader is operating at normal speed each

cycle requires 240 ms. The cycle is divided into 360°.

One degree corresponds to an average time of y5 ms.

The card reader cycle is also divided into 20 cycle

points (18° for each cycle point) . The beginning or

end of most impulses coincides with a cycle point. The
relation between the timing chart (Figure 76) and the

timing circle shown in Figure 75 is as follows:

The 9 row of the card passes under the reading

brushes at 9°. Whenever holes are punched in the 9

row of the card, impulses which last until 18° are

available at the corresponding read brush hubs. With
any 72 read brush hubs wired to the 72 calc entry

left and right hubs, these impulses are transmitted in

the form of two 36-bit words, to the channel and then

to some core storage locations. Transmission points

occur between two and three ms. after the reading

brush falls into the hole punched in the card. (The

contents of the word register in the channel are also

reduced at this time.) Thus, the 9-left and 9-right

transmission points occur at 12° or 13°. Each read

brush impulse has a duration of 9°.

The end of the record occurs at 224° and the end-

of-file indicator is turned on, after the last card is

read, at 7° of the following cycle.

When the reader is disconnected it continues to

move through its cycle until 330° (asterisk on the tim-

ing chart) ; at this point the feed unit is latched or

locked in position. The driving mechanism continues

to turn, however, and when a new rds is executed the

mechanism turns until it reaches one of four possible

unlatching positions. At this point a new card reader

cycle begins. The beginning point is always 330° be-

cause of an interlock.

18 36 54 7: 90 108 126 144 162 180

3

198 216 234 252 270 238 306 324

30*

342

CARD CYCLES 2
1

J2 18

DIGIT IMPULSES 9 8 7 6 5 4 3 2
ml,

° 11 12

CONTROL BRUSHES 9 8 7 6 5 4 3 2

1

li 11 12

READING BRUSHES 9 8 7 6 5 4 3' 2 1 ; 1 12

11
SPLIT COLUMN CONTROL 9 8 7 6 5 4 3 2 1

PILOT SELECTOR-COUPLING EXIT 16 340

PILOT SELECTOR-TRANSFER
225 240

END-OF-RECORD
225 234

READER MECHANISM LATCHES HERE

Figure 76. Card Reader Timing Chart

98 ibm 7090

Card Punch

One ibm 721 Card Punch (Figure 77) may be attached

to any channel on the system.

Punched card output may be decimal, alphabetic,

binary, or any special character code. Information is

punched at the rate of 100 cards per minute. Cards

to be punched are placed in the punch feed hopper

face down, 9-edge first. The punching format is con-

trolled both by the stored program and a control

panel located on the punch unit. Data channels hav-

ing a punch attached must also have a 716 printer

attached.

Basic operations are analogous to those of the

reader, except that instead of building up a card

image in core storage with information read from a

card, the channel sends a card image from core stor-

age to the punch to be recorded on a card.

Punching is started with the execution of a wrs

whose address specifies a channel and attached punch.

Physical motion is started in the punch by the wrs

execution, and within 70 ms. an rcha in the main

program must supply the channel with its first com-

mand. The punch will be disconnected if this does

not occur; then when the reset and load channel is

executed (if no other channel component is selected)

it will turn on the i-o check indicator on the com-

, % *'---—

puter console. Although any sequence of commands

might follow as a channel program, assume that only

one order (an iocd with a word count of 24) is exe-

cuted. Starting with the location specified by the

iocd command, 24 words from consecutive locations

in storage are punched as the 9-row left, 9-row right,

through the 12-row right o£ the card. The specified

card columns punched are controlled by the control

panel wiring; the 36 calc exit left and the 36 calc exit

right hubs may be wired to any 72 of the 80 punch

magnet hubs. Each of the 72 bit positions in a pair

of left and right words of the card image then corre-

spond to a particular column on the card. Thus a 1

in position S of the third word transmitted causes an

impulse to appear at the calc exit left S hub. If this

hub is wired to punch magnet position 1, a punched

hole in row 8, column 1 of the card results.

Figure 77. ibm 721 Card Punch

Punch Timing

During continuous punching, cards are processed at

a 100 card-per-minute rate. A punch cycle is illus-

trated in the timing circle shown in Figure 78.

If an iocd command causes a punch to disconnect at

any time during or after the punching of a card, a

new wrs must be executed within 25 ms. following

transmission of the 12-right word to the punch (be-

fore the end of the hatched portion) if the 100 card-

per-minute rate is to be continued. If this is done an

rcha must supply the channel with its first command
for the new cycle within 95 ms. following the 12-right

word transmission to the punch for the previous cycle.

If the punch is disconnected and a new wrs is ex-

ecuted after the end of the hatched portion of the

cycle, the punch may have mechanically latched or

stopped. In this case punch motion has ceased except

for the drive mechanism, which coasts to a stop. Mo-

tion is resumed when the new select is executed, but

approximately one revolution may be required before

the drive reaches a point where it will unlatch the

punch.

When the punch is at rest and the first wrs is ex-

ecuted, the drive is positioned arbitrarily. An rcha

must always supply the channel with its first com-

mand within 70 ms. If the rcha is not given soon

enough, the punch and channel may be disconnected,

in which case the rcha will turn on the i-o check

indicator. The minimum time between word trans-

mission (300 /xs. between words and 31 ms. between

rows) should be considered when load channel in-

structions are used to synchronize the punch with the

CPU.

Input-Output Components 99

2 Left 1 Left

3 Left

4 Left 1 1 Left

5 Left

6 Left

300 /xs.

Figure 78. Card Punch Timing Circle

Timing — Channel Commands

It is important to note that the points designated as

9-left, 9-right, and so on, in Figure 78 represent times

at which card image words are sent from the channel

to the card punch. Using load or store channel in-

structions, these times may be taken as cycle points

that afford the main program the means of identify-

ing which phase of a punch cycle is in process at any

given time. Note the following properties of the

channel which may be relevant in this regard:

1. As soon as a word is sent to the punch, the next

word to be transmitted is sent to the channel. The
channel address and word count registers are in-

creased and decreased, respectively, by one. Thus the

Nth point on the timing circle represents the time:

a. the ATth word is sent to the card punch.

b. the iV-plus-1 word is sent to the channel.

c. the contents of the address register are increased

to the iV-plus-2 word address.

When an rcha is executed, the first command and

the first data word specified by the command are sent

to the channel. The contents of the word register and

address register are stepped down and up by one.

These actions in the channel are all started by the

rcha execution, and all take place before the next

instruction is executed in the main program. The
foregoing account applies only to the punch, but is

applicable to other i-o units during write operation.

2. The loading of the first command and first data

word when a reset and load channel follows a wrs is

such that, once a cycle has been taken for a storage

reference, the channel continues to take successive

cycles until all of its logical needs have been met. For

example, when a tch command is received by the

channel, the next command (address of the tch) is

taken from core storage during the next storage cycle.

Furthermore, all needs for storage cycles in all chan-

nels must be satisfied before the main program is per-

mitted to make another storage reference.

3. An exception to the channel's tendency to take

new data or command words at the earliest possible

cycle is the load-channel instruction. This exception

is illustrated by an ioct command given during writ-

ing. In accordance with item 1 above, the word count

will be reduced to zero when the last word has been

sent from core storage to the channel, but before the

last word has been sent to the punch. The channel

does not look for a waiting load-channel instruction

in the main program until the word count is zero and

the last word has been sent to the punch.

4. When an iocd punch command is executed, the

punch is disconnected and the channel drops out of

operation when the word count plus one transmission

point has been reached.

Items 3 and 4 may be summarized as follows: An
ioct command with a word count equal to N words

forces the channel to look for a waiting load channel

instruction in the main program at the iVth transmis-

sion point (Figure 78) . An iocd command with a

word count of N words results in a normal disconnect

at the N + 1 transmission point.

100 ibm 7090

5. An end-of-record occurs approximately at the

end of the hatched portion of the cycle, no sooner

than 20 ms. and an average of 25 ms. following the

transmission of the 12-right word to the punch. The
end-of-record condition in a punch, occurring at the

25th transmission point, is similar to an end-of-record

gap on tape. Unlike tape, card equipment has no

means of writing an end-of-file.

A reset and load channel instruction which loads

an iocd, ioct, or iost command with a zero word
count may be used to terminate an i-o operation. If

the rcha is given within 925 microseconds after any

transmission or end-of-record point, the card punch
will immediately disconnect. If rcha is given later,

the disconnect occurs at the next transmission or end-

of-record point (even if this next point occurs on the

following card)

,

Timing Chart

A simplified timing chart of the punch is shown in

Figure 79. The basic cycle of 600 ms. is broken into

14 subsections, divided by cycle points numbered 12,

13, 14, 9 . . 12. Cycle points 9 through 12 denote the

times at which pairs of words are sent from the chan-

nel to the punch for normal row-at-a-time punching.

More exactly, points 9 through 12 stand for the time

at which the left word of the row is sent to the punch,

with the right word following in about 300 ^s. (Fig-

ure 78.

Cycle point 13 represents the time at which an end-

of-record condition occurs. Notice that cycle point

numbers correspond to card row numbers. Numbers
like 14.5 or 9.5 are to be taken as points standing half-

way between 14 and 9 or between 9 and 8. The frac-

tional part of a number always implies an extension

to the right of the cycle point. This left-to-right

orientation may also be thought of as the direction in

which the cycle actually progresses in time. The point

D (denoted by *) indicates the starting point of the

cycle. The timing chart shown in Figure 79 should

not be used as a mechanical reference. The card

punch is effectively locked at point D whenever it is

not in motion.

Impulses shown in the timing chart are:

Card Cycles. Each feed cycle, an impulse is available

at these hubs.

Digit Impulse. These impulses are available each

feed cycle.

Punch Brushes. These impulses are available when
the card is read by the punch brushes. A card passes

over the punch brushes and is read during the cycle

following the one in which it was punched.

Control Punches. Control punches in the 8 row of

a card are sensed and produce impulses at these hubs

on a punch cycle. Six such control brushes are avail-

able and may be manually set to read any six of 80

card columns.

Punch Delay Out. An impulse is available on the

punch cycle following the cycle in which a control

punch is sensed if the control brush is wired to a

punch control in hub.

Column Split. The column split acts as an inter-

nally wired selector that transfers from the 9-0 side to

the 11-12 side after 0.4 time on the timing chart. The
contacts return to their normal side at 13.4.

13 DM4 12 11 C 1 2 2 A
c
> 6 7 £ 9> 13

CARD CYCLES

DIGIT IMPULSES 9 8 7 6 5 4 3 2 1 11 12

PUNCH BRUSHES 9 8 7 6 5 4 3 2 1 11 12

SELECTOR HOLD

COLUMN SPLIT 9-0 SIDE

COLUMN SPLIT 11-12 SIDE

CONTROL BRUSHES

PUNCH DELAY OUT
(Next cycle)

SENSE EXITS

(See explanation)

END OF RECORD

* PUNCH MECHANISM LATCHES HERE

Figure 79. Card Punch Timing Chart

Input-Output Components 101

Selector Hold. The 10-position selectors are of the
immediate pickup type. Whenever a selector pickup
hub is impulsed, its contacts transfer and remain trans-

ferred until 12.5 of the punch cycle, at which time
the common hubs are again connected to the normal
hubs. If, however, at 12.5 the pickup hubs are still

impulsed (by a sense exit, for example) , the selector

remains transferred until 12.5 of some succeeding
punch cycle.

Sense Exits 1 and 2. Impulses are made available at

these hubs through the execution of appropriately
addressed pse instructions in the main program. In
general, synchronous relation between the cpu and
the punch need not concern the programmer unless
pse instructions are to be used to pick up selectors or
exert some control over punching operations. Points
of interest regarding the execution of a pse which
addresses a sense exit hub on the punch are:

1

.

When addressing the punch, a pse must be given
while the channel is in operation and the punch
is selected; i.e., the order must be executed after

an initial wrs in the main program and before
a disconnect occurs in the channel. Otherwise,
the pse has no effect and is treated as a no-
operation.

2. When the punch is not in motion and the first

wrs is executed, the feed is effectively locked at

"D" (Figure 79). The cycle does not start

until the arbitrarily positioned drive mechanism
has moved to the latch point and the feed be-

comes unlatched (able to move) . If a pse is

given immediately following the initial wrs, the
impulse is available before the punch cycle has
started.

3. Under the circumstances indicated in item 2, the
impulse is emitted from the sense exit hub from
the time the pse is executed to 14.2, and from
12.6 through 14.2 of every cycle thereafter, until
the punch is disconnected. Once the punch is

disconnected, the impulse is not available until

another identically addressed pse is executed.
Thus, if an iorp command is followed by an
iocd with a zero word count, the punch is dis-

connected at 12.6 (end-of-record) and the sense
exit impulse is no longer available. If a wrs is

executed immediately after the disconnect,
punching continues without losing the next
cycle. Notice that if it is desirable to use sense
exit impulses during some cycles but not during
others, some scheme such as that described in

the preceding explanation is necessary to ter-

minate the hub's impulse without terminating
continuous punching.

4. A pse instruction executed between 14.2 and
14.9 causes an exit impulse to be emitted at the

end of that cycle and on all succeeding cycles

from 12.6 to 14.2.

5. A pse instruction, given any time at cycle point

9 or later, causes an impulse to be emitted from
the appropriate sense exit within 6 ms. and last-

ing until 14.2. The impulse will be repeated in

the usual manner until the punch is discon-

nected. On the last cycle of punch operation a

pse should not be programmed after 9 time.

Once the impulse is emitted it remains active

until 14.2 of the next cycle, even if the punch is

disconnected. Internal damage may occur if the

emitting impulse is present at the sense exit hub
throughout a period when the punch is not in

use.

Printer

One ibm 716 Printer (Figure 80) may be attached to

any channel on the system.

The printer is equipped with 120 rotary type

wheels (Figure 81) . Each wheel has 48 characters

including numerals, alphabetic symbols and special

characters (Figure 82). Use of the stored program
enables the computer to print any desired informa-

tion in any form convenient to the programmer. This
information is printed at the rate of 150 lines per
minute. Printing format is controlled by the arrange-

ment of the information in storage and by a control

panel located on the printer.

Figure 80. ibm 716 Printer

102 ibm 7090

H 8 2 R

L T 2 B

Figure 81. Type Wheel Schematic (fortran)

A line is printed in a time period which is called a

print cycle. During this interval the type wheel is

rotated until the specified character is centered in

front of the platen and then printed. The amount of

rotation, and consequently the character printed, de-

pends on the time in the print cycle when the elec-

trical impulse initiates motion. For example, if a

print wheel receives an electrical impulse during that

part of the cycle designated as 9 time, the number 9

is printed. Also if the print wheel receives an impulse

at 1 time and an impulse at 12 time, the print unit

positions the wheel to print the letter A (according

to the standard ibm code shown in Figure 83)

.

Printing is similar to tape and card operations with

respect to the role played by the channel to which the

printer is attached. A printer record corresponds to a

single printed line or to the information in core stor-

age necessary to print one line. An end-of-record con-

dition occurs at the end of each print cycle. Con-

sequently, all eight channel commands are available

for use in a print program.

Printing a Line

To initiate printing, a wrs with a normal address

specifying a channel and its attached printer may be

digit no (N) zone 12 (Y) zone 1 1 (X) zone zone

no digit + -

1 1 A J /
2 2 B K S

3 3 C L T

4 4 D M U

5 5 E N V
6 6 F O W
7 7 G P X
8 8 H Q Y
9 9 1 R Z
8-3 = $ /

8-4 -
)

*
(

Figure 83. Punched Card Code (fortran)

employed. Physical motion in the printer is caused by

the wrs and within 58 ms. a reset and load channel

must be executed to supply the channel with its first

command.
If an iocd command with a word count of 24 is

given, the channel synchronizes itself with the printer

and sends 24 words from consecutive locations in core

storage, each at an appropriate time, to the printer;

thus one line will be printed. The characters which

are printed are determined by the contents of the 24

words in core storage.

The first two words are sent to the printer at 9-

time in the printer cycle. If both words contained all

l's (S, 1-35) and all other words in the card image

contained O's, the number 9 would be printed in 72

positions on the same line. The printer control panel

has 72 hubs (calc exit left and right) which corres-

pond to the 72 bit positions of the pair of words trans-

mitted from core storage. Wherever a bit position in

the first word contains a 1, an impulse is emitted by

the corresponding calc exit left hub; likewise a bit in

the second word creates an impulse at a calc exit right

hub. The 72 hubs may be wired directly to any 72 of

the 120 print entry hubs. Impulses sent to the printer

via these hubs control the type wheels directly and

cause specific characters to be printed. Thus, through

wiring between the calc exit and the print entry hubs,

each of the 72 bits from a pair of words in core storage

may be made to correspond to a particular type wheel.

Zone 12 12 12 ll 11 11 None None

Digit None 8-3 8-4 None 8-3 8-4 8-3 8-4 1 8-3 8-4

A & n _ $
* % / * @

B / — $
*

i % & # @
C & n — $

* % # @
D —

. n — $
*

i % / I @
E (This code not used)

F + .)
— $

*
t (/ = —

G + n - $
*

f % / + —

Figure 82. Alternate Type Wheel Characters

Input-Output Components 103

The print cycle, as it progresses, goes through points

designated 9-time, 8-time, . . . 0-time, 11 -time, 12-time.

These times are analogous to those of the standard

407 that operates from card reading. At each time

point, the next pair of words from a 24-word record

in core storage are sent to the printer. The 24 words
are designated 9-left, 9-right, and so on, corresponding

to the time points at which they are sent to the printer.

The record comprises a card image of exactly the type

obtained by reading a card into consecutive core stor-

age locations with each pair of words corresponding to

a card row.

Note that the character printed by a given type

wheel is determined by the contents of a fixed bit

position in every other word of the record. Thus, if

the l-left and 12-left words have one bits and all other

left words have zeros, the type wheels associated with
the bit positions will print the letter A.

Printing Multiple Lines

If the word count of an iocd command is greater than

24, additional lines may be printed. The 25th word
is taken as the first word of the card image for the

second line of printing; i.e., the 25th and 26th words
are sent to the printer at 9-time of the second print

cycle and successive words will be sent to the printer

and printing will continue until the word count
reaches zero. When the count reaches zero, the printer

is disconnected from the channel and, if no other
operation is waiting, the channel drops out of opera-

tion. If this occurs in the middle of a card image, the

line is printed as though all of the missing portion of

the image contained zeros.

In general any command or sequence of commands
may be used in sending words to the printer. An end-
of-record condition occurs following the transmission
of every 24 words.

Printing with Checking

The previous statements describe printing without
checking. Checking is possible because the printer can
not only receive print impulses from the computer
but can also send back "echo impulses" generated by
the individual type-wheel position. Printing with
checking requires a somewhat more complicated pro-

gram, but can be accomplished without reducing the

150-line-per minute printing speed. Via control panel
wiring, echo impulses may be returned to core storage
in word groups which are similar to the words that

were sent to the printer to be printed. The stored

program can then compare the image transmitted

against the image received, to insure that the type

wheels were correctly positioned. During the first half

of the print cycle words are sent to the printer, and

during the last half of the cycle the echo words are

returned from the printer. These two time periods

overlap somewhat, so that echo words begin returning

from the printer before all print words have been

sent. The general sequence of events in a print cycle

with echo checking is as follows:

1. An rds instruction addressing a channel and its

attached printer is given to initiate the first print cycle.

2. Within 58 ms. a reset and load channel must be

executed, thus supplying the channel with its first

command.

3. As in printing without checking, 12 pairs of

words (forming the 12 rows of the card image) are

taken by the channel from storage and are sent to the

printer, where they determine which characters are

printed. Nine pairs of echo words, similar to rows 9

through 1 of the original image, are sent from the

printer back to core storage. In the standard ibm code,

the digits 8-3 and 8-4 (with or without zone punch-

ing) are used for special characters. Two additional

pairs of echo words provide a check that the correct

print wheels have received these impulses. As a result,

for all positions in the original image where both 8

and 3 rows (or 8 and 4 rows) contain l's, the 8-3

(or 8-4) pair of echo words will contain l's. A single

type wheel causes the emission of only one echo

whenever it prints a character. Zone (0-11-12) print-

ing is not echo checked. If such characters requiring

both a zone and a digit impulse are printed, only the

digit impulse may be echo checked.

In printing with echo checking, an end-of-record

condition occurs after 46 words have been transmitted

(24 words from storage and 22 echo words returned)

.

The exact sequence of transmission is: 9-left through
1 -right written; 8-4 left and right echo words received;

0-left and right words written; 8-3 left and right echos

received; 1 1-left and right words written; 9-left and
right echos received; 12-left and right words are writ-

ten; 8-left through 1 -right echos received.

It is possible for the main program to compute
throughout the cycle. If the channel is operated

through an iocd command with a word count of 46,

it is necessary to stretch the image out over a 46-word
block of storage, reserving appropriate locations for

the returning echo words. By using a sequence of

commands, it is possible to print an image of 24

words and also direct the echo words to any other

configuration of storage locations.

104 ibm 7090

Printing More than 72 Characters per Line

Through use of selectors or column splits on the

printer control panel, storage can activate more than

72 print wheels. For example, seven 10-digit numbers

with signs can be printed. Additional characters can

also be printed by impulses emitted by the printer

itself. The control panel may also be wired so that

120 characters originating from storage can be printed

on each line at the rate of 75 lines per minute, with

two print cycles being required for each line of print-

ing. Normal spacing of the printer must be sup-

pressed before the second cycle.

Timing without Echo Checking

Continuous printing occurs at a rate of 150 lines per

minute, each line requiring one normal print cycle.

The timing of such a cycle is shown in Figure 84.

If the transmission of the 12-right word causes the

channel to drop out of operation, the next wrs must

be given within 115 ms. following the 12-right trans-

mission, to keep the printer in continuous motion.

The reset and load channel which follows the select

must be given within 173 ms. of the 12-right trans-

mission to supply the channel with its first command
for the second print cycle. These minimum times al-

low for the safe timing, as the average elapsed time be-

tween the 12-right transmission of one print cycle and

the 9-left transmission of the next cycle is 216 ms.

In general, it is not necessary to give a new select

for each print cycle. Any desired sequence of com-

mands may be used to print lines continuously and

an iocd command will terminate printing when it is

executed by the channel. The channel to which the

printer is attached remains in operation during the

printing operation. The time between print cycles is

sutficient to permit the execution of some other i-o

operations through the same channel with no inter-

ruption in the 150 line speed. When another i-o op-

eration is used between the printing of two lines, it

is necessary to disconnect the channel following the

last word transmission to the printer and to issue a

new wrs during the hatched portion of the cycle for

printing of the next line.

Printer Disconnect

An iocd with a word count of 24 disconnects the

printer on end-of-record. An iocp with a word count

of 24 and an iocd with a word count of zero discon-

nects on the 12-row right. An ioct with a word count

of 24 and without a load channel waiting also dis-

connects on the 12-row right. As the disconnect

occurs, the channel is taken out of operation. Any

select instruction (including the wrs for the next

print cycle) issued while the channel is still in opera-

tion delays the main program until the printer dis-

connects and frees the channel to accept a new select.

An iocd command may be used to disconnect the

printer before 24 words have been transmitted. For

this operation the channel drops out of operation one

cycle point after the last word is sent to the printer.

When the channel drops out of operation, the printer

itself remains in motion. It is for this reason that a

new wrs issued at any point in the hatched portion of

the cycle enables printing to continue at maximum

4 Left
3 Left

1 1 Left

"*T73ms.-

Figure 84. Printer Write Timing Circle

Programming Examples 105

speed. A new wrs, given more than 115 ms. after the

12-right transmission, may find the print unit latched.

In this case printer motion has ceased except for the
drive shaft (which coasts to a stop). The shaft will

resume full speed when the new select is executed but
will require about one revolution in which to return
to a point where it can latch with the print unit again.

Thus, the effect of giving a wrs too late is to lose one
print cycle. This affects printing speed and may affect

control panel wiring, but no logical interference with
the main program or the channel is entailed.

A similar timing situation is involved when the

printer is not in motion and the first wrs is executed.

The drive shaft will be at an arbitrary position. If

the shaft is positioned just before the latch point, the

print cycle may be started within a few milliseconds.

In terms of the cycle shown in Figure 84, this cor-

responds to a wrs given at the end of the hatched
portion. Because of this possibility, a reset and load
channel must always be given within 58 ms. following
the first wrs. The average elapsed time between the
first wrs execution and the 9-left transmission to the

printer is 280 ms. If a reset and load channel is not
given soon enough, the printer and the channel may
be disconnected. A late reset and load turns on the
i-o check indicator.

Other minimum times shown in Figure 84 should
be considered when using load channel instructions to

synchronize the main program and the printer. For
example, assume that a reset and load channel loads

an ioct with a word count of one. This command
sends the 9-left word to the channel. At 9-left time
this word goes to the printer. A load channel must
be waiting in the main program. If the waiting load
instruction then loads the printer channel with the

same command, a second load channel must be given
within 300 microseconds. If the same ioct command
is loaded for each word transmitted in the image, then
a total of 23 load channels are required.

Timing of Data Channel Commands

It is important to note that all points on the timing
circle of Figure 84 represent times at which card
image words are sent from the channel to the printer.

Other events which come into play at this time are:

1. When one card image word is sent to the printer,

the next word is sent to the channel. The channel
address register and the word count register are in-

creased and decreased, respectively, by one. Thus, the
Nth point on the timing circle represents the time at

which the Nth word is sent to the printer, the N+l
word is sent to the channel, and the address register

is increased to the address of the N+2 word.

2. A general principle of channel design is that,

once a cycle has been taken for a storage reference,

the channel continues to take storage cycles until all

of its needs are met. For example, during a write

operation, when an iocp command is executed and the

last data word enters the data register, the contents
of the word register go to zero. At the next trans-

mission point the contents of the data register are sent

to the printer. At this point a storage cycle is started

to bring the next command from storage and is fol-

lowed by another storage cycle to bring in the next
data word.

During a read operation, when an iocp command
is executed and the last data word enters the data
register, a storage cycle is taken to store the contents of

the data register. During this cycle the contents of

the word register go to zero, thus starting another
storage cycle to bring in the next command. Similarly,

when the tch command is received by a channel, the
command specified by its address field is immediately
loaded into the channel (followed by the first data
word). Furthermore, if more than one channel is in
need of storage references at one time, then all such
references will be made.

3. If synchronous operation with the main program
is involved, action in the channel is not always im-
mediate. During a write operation, as indicated in
item 1, when the word count has been reduced to

zero, the last data word (subject to the current com-
mand) has been stored in the channel but has not
been sent to the i-o device. With an ioct command
being executed after the last word has been written,
a waiting load channel will then be executed. With
one reset and load channel and 23 load channels, both
conditions (word register equal to zero and the data
word sent to the i-o unit) are met at each transmis-
sion point before a new load channel can be executed
in the main program.

4. Similarly, if an iocd command is executed, the
printer is disconnected and the channel drops out of
operation when the transmission point of word count
plus one has been reached.

A reset and load channel instruction which loads
an iocd, ioct or iost command with a zero word count
may be used to terminate an i-o operation. If the
rcha is given within 925 microseconds after any trans-

mission or end-of-record point, the printer will im-
mediately disconnect. With rcha given later, the dis-

connect occurs at the next transmission or end-of-

record point (even if this next point occurs on the

following print cycle)

.

5. An end-of-record condition in a print cycle

occurs no sooner than 13 ms. after the 12-right trans-

106 ibm 7090

mission. At this time any end-of-record response speci-

fied by the current command is made.

Although the instruction wrs has comparable mean-

ings for both magnetic tape and printers (words are

sent from storage to the i-o device) the execution of

commands of the record control type differs during

writing, depending on whether a tape or printer is

selected. During a print cycle, an end-of-record con-

dition always occurs at a fixed point of the cycle. If

the command (write end-of-record) with a word count

of 2 is given to the printer, this will result in printing

the 9 row. The remainder of the print image will be

skipped over and the next command will not be

brought into the channel until the end-of-record

occurs.

Write Binary

The address of a wrs printer instruction may specify

binary printing. After such a select has been issued,

no words are transmitted to the printer until 1-time.

Two words, corresponding to the 1-left and 1 -right

rows, are sent to the printer. This results in the print-

ing of l's by the type wheels, corresponding to the

non-zero bit positions of the two words. On each

cycle, only these two words are sent to the printer, so

O's can be printed by control panel wiring only. The
transmission of such words during binary printing is

accomplished through execution of channel com-

mands in the usual way. The end-of-record occurs the

same as with the write printer operation.

Timing with Echo Checking

As shown in Figure 85, the timing of a print cycle

with echo checking is similar to that of one without

it. Following the first rds, an rcha must supply the

channel with its first command within 58 ms. The
time point at which the 24 card image words are

transmitted to the printer are unchanged by use of

echo checking. With echo checking, however, 22

additional transmission points occur to provide for

the echo words. If the printer is disconnected after

the last transmission (1 -right echo), a new rds must be

given within a minimum of 12 ms. (hatched portion)

if printer motion is to be continuous. When an iorp

or iort command is used, the channel remains in

operation and approximately 16.3 ms. (and no sooner

than 12 ms. after 1 -right echo) an end-of-record oc-

curs. In general any number of printed lines may be

echo checked following the execution of a single rds.

An rds addressing a channel and attached printer rep-

resents the only instance in which a select instruction

initiates both writing and reading.

If an ioct command with a word count of N is the

first command executed in a print cycle, a waiting load

channel is executed at the Nth transmission point,

whether this specifies the transmission of an echo

word or a print image word.

Note: Position 19 of the command, indicating non-

transmitting mode, is effective only on read printer

operation and provides a useful method for skipping

the 8-4 and 8-3 rows of numerical printing (assuming

that these rows are not used for sign printing)

.

8 Left Echo

12 Right

12 Left

7 Left Echo

6 Left Echo

5 Left Echo

9 Left Echo.

1 1 Left

8-3 Left Echo

Left—^ O^

8-4 Right Echo

8-4 Left Echo

1 Left

2 Left

3 Left

4 Left

5 Left

6 Left

4 Left Echo

•3 Left Echo

2 Left Echo

1 Left Echo

1 Right Echo

1— 300ms

.-- 9 Left
300ms \ 9R .

ght

Figure 85. Printer Read Timing Circle

Programming Examples 107

Programming Examples

A computer program is similar to the program re-

ceived at baseball games, concerts, and many other

presentations in that it is a plan of operations or

events that will occur. The process of getting to work

each morning may be compared to a program con-

cerned with the following problem: Compute A + B
— C and store the result (D), if it is a plus number;

if minus, halt the computer (Figure 86).

Block diagrams, also called flow charts, are a sche-

matic diagram of the logic of the computer and meth-

ods it uses in solving a problem. The main reason for

a flow chart is that it is easier to write and under-

stand than a written paragraph about the problem.

The flow chart is a map of all logic paths and deci-

sions used by the computer, and simplifies the writing

of a coded computer program.

The same program used in Figure 86 may be ex-

pressed in program terminology as shown in Figure

87. Given: Factor A stored in location 100, factor B
in 200, factor C in 300.

The instruction location designates the place, in

core storage, where the instruction is stored. The in-

struction abbreviations are such that they represent

the actual operation involved. For example, sub means

subtract and sto means store, while cla means clear

the register to zero and add. The address part desig-

nates a location in core storage where a number is

located or where a number may be stored. Thus, the

operation of the program would proceed as follows.

The program is started with the first instruction

(cla 100) which is contained in location 0000. This

instruction will clear the accumulator register to zero

and then bring the contents of core location 100 into

the accumulator (factor A). The next instruction

(add 200) will bring factor B from storage and com-

Instruction Location Instruction Address

Move A 0000 CLA
ADD
SUB
STO

100

200
300

400

Form A + B . . 0001

Form A + B - C . . .

.

.. 0002

Form Answer (D) . . 0003

Figure 87. Simple Program

bine it with factor A. The third instruction (sub 300)

brings factor C from storage and subtracts it from the

combined factors A and B. The fourth instruction

then takes the result in the accumulator and stores it

in storage location 400. Thus D has been formed and

stored.

A possible use of two of the shifting instructions is

shown in Figure 88 with the following facts known.

Two numbers are contained in the same storage loca-

tion. One number is located in positions 6 through 20,

and the other is in positions 21 through 35. (Assume

that this word is already located in the accumulator.)

The problem is to multiply the number in positions

6-20 by the number in positions 21-35.

Location Instruction Address Comments

0000 LRS 0015 Move positions 21-35 into the MQ.
0001 RQL 0016 Align this number in proper place to

be used as the multiplier.

0002 STO 0100 Store the multiplicand so that it may
be used in the multiplication.

0003 MPY 0100 Multiply the two numbers.

0004 STQ 0200 Store the resujt. (STQ is used because

the result is small enough to be

completely contained in MQ.)

Figure 88. Multiply and Shifting Problem

Conditional transfers may be used to solve the fol-

lowing type of problem. Assume that A and B are two

positive numbers located in storage at locations 100

Move A to arithmetic section

'

f

Add B to A and then subtract

C from the result

'

'

Yes
Is result plus?

No

<r
'

t

Store result Halt computer

Get out of bed

Wash, shave, and

get dressed

Eat breakfast

Yes Cold

t

day?

1

No
Put on

.overcoat

'

f

Go to work

Figure 86. Simple Program Analogy

108 ibm 7090

Location Instruction Address Remarks

0000 CLA 0100 Factor A
0001 SUB 0101 Subtract factor B from factor A
0002 TZE 0017 Factors are equal

0003 TPL 0005 A is larger than B

0004 TMI 0012 A is smaller than B

0005 CLA 0100 Factor A
0006 STO 0201 Store A
0007 CLA 0101 Factor B

0010 STO 0200 Store B

0011 HTR 0022 Stop. A was larger than B

0012 CLA 0100 Factor A
0013 STO 0200

0014 CLA 0101 Factor B

0015 STO 0201

0016 HTR 0022 Stop. A was smaller than B

0017 CLA 0100 Factor A
0020 STO 0200

0021 HTR 0022 Stop. A was equal to B

0022 Proceed wi th program

Figure 89. Flow Chart and Program for Sorting

and 101. The problem is to find the smaller number
and put it in location 200; also, to place the larger

number in 201. If they are equal, put one number in

200 and nothing in 201. The computer program is

shown in Figure 89.

The use of index registers can be pointed up by

showing the number of program steps saved, and thus

also computer time saved. Given numerical constants

in locations 1 through 50, with a 1 in location 100, the

numerical value 50 in location 200 and the value 50

stored in location 300. The problem is to add 1 to

each of the 50 constants. Figure 90 shows the prob-

lem solved without using index registers. Figure 91

shows the same problem solved with index registers

being used. The advantages and flexibility of in-

dexing are readily evident.

Comment Location Instruction Address

Form constant plus 1000 CLA 0001
one and 1001 ADD 0100
store 1002 STO 0001

Increase constant 1003 CLA 1000
address and 1004 ADD 0100
store 1005 STA 1000

1006 CLA 1002
1007 ADD 0100
1010 STA 1002

Reduce the counter 1011 CLA 0300
by one 1012 SUB 0100

Test 1013 TNZ 1000
Stop 1014 HLT

Figure 90. Address Modification without Indexing

Location Instruction Address

Set 50 in XRA 1000 LXA A 0200
Constant modifica- 1001 CLA 0100
tion loop and 1002 ADD A 0051

store 1003 STO A 0051

Test for equal XRA 1004 TIX (-1) A 1001

Stop 1005 HLT

Another programming aid which permits the chang-

ing of an instruction's address is indirect addressing.

Bits in positions 12 and 13 denote indirect address-

ing. They are signified in the instruction format by
an "F" and in programs and text by an asterisk fol-

lowing the instruction code (cla*). One additional

computer cycle will be taken whenever indirect ad-

dressing occurs. During this cycle the word located at

the instruction's address is brought out of storage and
its address is used to locate the word upon which the

instruction operates. This is sometimes called "the

second effective address."

As an example of the feature's use, assume that a

word has been read into storage by an input-output

device. The programmer knows that the command
which read in the data is in location 0100. To bring

the data back into the accumulator, a portion of the

program could be as shown in Figure 92.

The indirect addressing feature may also be com-

bined with indexing, as mentioned above, to obtain a

second effective address.

Location Instruction Address Remarks

0077

0100

0200

XXX
l-O

CLA*

xxxx

0100

Previous command
Input-output command

The CLA* would bring in the

data serviced by the l-O

instruction even though the

address portion is not known.

Figure 91. Address Modification with Indexing

Figure 92. Indirect Addressing Example

Definition of an Assembly Program

An example of an assembly program is one that de-

fines the symbols and their use as follows:

1. The general format of each instruction is:

LOCATION, OPERATION, ADDRESS, TAG, DECREMENT.

Only those instructions that are referred to

by other instructions in the program need be

given a symbolic location. All other instructions

may be written leaving the location field blank.

If the tag and decrement fields are not used,

they are left blank. In the case of instructions

such as caq and vlm, the count is placed in the

decrement field. Also, for these instructions, if

a tag is not required the instruction would be

written in the form operation, address, o, count.

2. A symbolic address or location can be composed

of one to six alphamerical characters, one of

which must be non-numerical. For example:

tempI, go, halt, xl are all allowable symbols.

Thus, each symbol can have an important

Programming Examples 109

mnemonic value. Six special characters may not

be used in a symbol. They are + — * / , and $.

These characters are used for special operations.

For example, the plus sign is used for the ad-

dition of two or more symbols and/or numbers.

Such an operation might be Al + A2 or halt
4- 3.

3. When dealing with a block of data words, only

one location in the block need be assigned a

symbol. For example, if a block of data words

consisted of Al, A2, . . . A75, the location of

the first word of the block could be given the

symbol aone. All other words in the block would

be related to this point. If A23 were to be re-

ferred to it, would be by the symbol aone + 22.

4. When the actual value of an address, decrement,

or count is known, it should be written in abso-

lute form.

When the program has been written it is prepared

for assembly by punching each instruction and piece

of data into a separate ibm card. These cards are then

referred to as symbolic cards.

This symbolic deck is converted to magnetic tape

through the card-to-tape equipment and entered, along

with the assembly program, into the computer. If de-

sired, the symbolic program may be entered directly

into the computer through the on-line card reader.

Assembly

In the assembly process, the symbolic instructions are

processed as follows:

1. The symbolic operation codes are replaced with

the actual patterns used by the computer. For

example, cla is replaced by the combination of

bits 000 101 000 000 which occupy positions S,

1-11 of the 36-bit instruction word in storage.

2. The absolute location for the first instruction

of the program is determined by the program-

mer and given to the assembly program. Each
succeeding instruction and data word is given

an absolute location stepped up by one. It is

therefore important that the symbolic deck be

in the proper order. Each symbolic location de-

tected by the assembly program is entered into a

table (called the symbolic table) along with its

assigned absolute location. The assembly pro-

gram then replaces the symbolic address with

the absolute locations from the table.

Normally, as a product of the assembly program,

a listing of the program in the symbolic format and

the actual machine language program is made. In

addition, the assembly program furnishes the pro-

grammer with a deck of cards containing the machine

language program.

Logical Check Sums

One of the principal methods of keeping a check on a

block of information in storage is to attach to this

block a sum value of all the words in the block. This

sum is called the check sum. The best possible check

sum that can be formed is one that is developed us-

ing the logical operations of the computer. This check

sum is known as a logical check sum. It is normally

not equal to the algebraic sum of the block. When
using a logical check sum there is no possibility of

overflow as in the case of algebraic sums. Further-

more, it does not matter in what direction the words

of the block are added. This is not true in algebraic

summation where overflow possibilities are affected

by the direction of summing. An example of the com-

puting of check sums is shown in Figure 93. The
programmer knows that there are five blocks with

nine words in each block. The first block starts at

location 0601, the second at 0611, the third at 0621,

and so on. Location 0500 contains a 9 and location

0501 contains a 49. The problem is to find the logical

sum of each block and place it in the first location

preceding that block.

The coding of a program instruction normally fol-

lows this sequence: (1) the location of the instruction,

(2) the instruction mnemonic, (3) the address, if any,

(4) the index register, if any (5) the decrement. Thus a

tix, 1000, A, 1 would mean that the tix transfer ad-

dress is 1000, index register A is to be used, and a

decrement value of 1 is involved. The location of the

instruction would precede the tix.

The program shown in Figure 94 will compute the

logical check sum for a block of 300 words in core

storage. Assume that the 300 words are located in

storage in locations 700 through 999. The resulting

check sum is to be stored in location 1000. The pro-

gram uses an index-register-controlled loop to form
the logical check sum. The contents of index register

1 are used to effectively modify the address of the

instruction in location 102. The index register ini-

tially contains the number 300. The final value in the

index register will be 1 since the decrement of the

tix instruction is 1. The manner in which the two-

instruction loop is performed is as follows:

110 ibm 7090

Set upXR B

Set up XR A

Clear the AC

Logically add

words in block

Yes

Store the

result

Store the result

H | LOCATION

1 |2 6 7

OPERATION j 1 ADDRESS, TAG, DECREMENT/COUNT

8 i '

| 0100 LXA
; |501,B 49toXRB

! 0101 LXA { i 500,A 9 to XRA

|
0102 CLM

i i Clear the accumulator

J

0103 ACL
! |650,B Add the block

i 0104 TNX
;

j" 110,8,1 Test all blocks for end

i 0105 TIX i i 103, A, 1 Reduce count

i 0106 SLW i
! 640, B Store the check sum for block

! 0107 TIX
I

! 101, BJ Test for end of block

!
0110 SLW

! ! 640 Store check sum (last one)

!
om HPR i i Stop

Stop

Figure 93. Computing Check Sum Program and Flow Chart

LOOP CYCLE

End of 1st cycle

(Before tix executed)

End of 2nd cycle

(Before tix executed)

End of 3rd cycle

(Before tix executed)

End of 299th cycle

(Before tix executed)

End of 300th cycle

(Before tix executed)

End of 300th cycle

(After tix executed)

i.r. 1 effective address of

acl instruction

300 acl 700

299 acl 701

298 acl 702

2 acl 998

1 acl 999

Not executed

Normally a symbolic location is assigned to the

block of words. For example, the symbol first could

be used to designate the location of the first word of

the block. The symbol cksum could be used to specify

the location where the computed logical check sum is

to be stored. The program would then be written as

shown in Figure 95.

The number of times the loop is executed is de-

pendent upon the value placed into the index regis-

ter and the value of the decrement of the tix instruc-

tion. In the preceding example, since xra contained

300 and the decrement of the tix instruction is 1, the

loop is executed 300 times. If the decrement had been

2, the loop would have been executed 150 times. In

this case the logical check sum would have been com-

H | LOCATION

1 ,2 6 7

OPERATION j 1 ADDRESS. TAG, DECREMENT/COUNT COMMENTS

8 ! • 72

IDENTI-

FICATION

73 80

! 100 AXT • ! 300, 1 LOAD 300 INTO INDEX REGISTER 1

! ioi CLM ', i CLEAR ACCUMULATOR (EXCEPT FOR SIGN)

i 102 ACL ! i 1000.1 TWO INSTRUCTION LOOP TO COMPUTE LOGICAL

i 103 TLX ; i 102,1,1 CHECK SUM. TLX USED TO TEST END OF LOOP
1 104 SLW | !

1000 STORE LOGICAL CHECK SUM IN LOCATION 1000
l

Figure 94. Logical Check Sum Program, Actual

H | LOCATION

1 .2 6 7

OPERATION
J

1 ADDRESS. TAG. DECREMENT/COUNT COMMENTS

8 i
' 72

IDENTI-

FICATION

73 80

AXT
J

! 300. 1 LOAD 300 INTO INDEX REGISTER 1

CLM ! i CLEAR AC (EXCEPT FOR SIGN)

! ADDER ACL ! i FIRST + 300, 1 TWO INSTRUCTION LOOP TO COMPUTE LOGICAL

TLX ' | ADDER, 1, 1 CHECK SUM. TLX USED TO TEST END OF LOOP

SLW 1 ! CKSUM STORE LOGICAL CHECK SUM IN LOCATION CKSUM

Figure 95. Logical Check Sum Program, Symbolic

Programming Examples 111

puted for every other word in the block. Note that

at the end of the 300th cycle the index register con-

tained 1. The contents of an index register are never
reduced to zero as the result of using a tix or tnx
instruction. The final value found in an index regis-

ter is dependent on the decrement of the tix or tnx
instruction. If the decrement is the integer K, then,

depending upon the initial value of the contents of

the index register, the final value of the index regis-

ter can vary in the range K, K-\, K-2, , 3, 2, 1.

One of the ways check sums could be used is shown
in Figure 96. The problem is to find the logical sum
of a block of seven numbers starting in location 0100.

If the sum does not equal the predetermined amount
in location 0200, transfer to an error stop. If it does
equal the amount in 0200, proceed with the program.
The first check sum (original) is in location 0200, and
a 6 is in the address part of location 0006.

|
Form 1st word of bl ock 1

*
|
Add next word in block |

*
|
Test for 7 words 1

*
|
Compare with Loc . 0200

|

1

1

0000 CAL 0100
0001 LXA, A 0006
0002 ACL, A 0107
0003 TIX,1

t
A 0002

0004 ERA 0200
0005 TZE 0007
0006 HPR 0006
0007 ADD 0300

Not Equal

,
r ,

Stop
|

Proceed

I
Proceed

[

Figure 96. Use of Check Sums and Tests

Packing and Unpacking

There are many cases where the information to be
handled by the computer is made up of individual

items, each of which is less than the size of a com-
puter word. For example, it may be necessary to work

with numbers no larger than three decimal digits.

To conserve storage space, three such numbers can
be stored in the same word as illustrated in Figure
97, where positions S, 14 and 25 are the sign posi-

Nl N2 N3

S 13 14 24 25

Figure 97. Diagram of Packed Word

35

tions of the numbers N lt N 2 , and 2V3 , respectively.

Handling of information in this manner is called

"packing." In addition to conserving storage space,

packing also increases the entry and exit speed of

information by reducing, for instance, the amount of

magnetic tape which must be read or written.

Assume that a word in core storage has the form
shown in Figure 97, and the number N2 is to be

operated upon. Before arithmetic operations can be

performed with this item, it must be separated from
the other data in the word. The method of doing this

is called unpacking. The logical operations are em-
ployed in this type of operation, as they provide a

powerful and flexible tool for carrying out the method.
The number 2V2 is to be unpacked from the word
without destroying the numbers AT and iV3. There-

fore, the unpacking will be done in the accumulator,

saving the packed word in core storage.

The program shown in Figure 98 will accomplish

this. The mask used in the program contains l's in

positions 14-24 and 0's elsewhere. The result of using

this mask with the ana instruction will place the num-
ber N2 in positions 14-24 of the accumulator. By vary-

ing the format of the mask, any of the three numbers
could have been unpacked (extracted) from the packed
word.

LOCATION

2 6

MASK

OPERATION

CAL
ANA

ALS

SLW

OCT

Figure 98. Unpacking Program

ADDRESS, TAG, DECREMENT/COUNT

PAKWD PLACE PACKED WORD INTO AC POSITIONS P, 1-35

MASK N2 LEFT IN AC AS RESULT OF ANA OPERATION
14 SHIFT N2 UNTIL SIGN OCCUPIES POSITION P

LOCN2 STORE N2 IN LOCATION LOCN2

000017774000 MASK CONFIGURATION TO OBTAIN N2 ONLY

IDENTI-

FICATION

112 ibm 7090

H | LOCATION

1 ,2 6 7

OPERATION
j 1 ADDRESS, TAG, DECREMENT/COUNT COMMENTS

8 _j_ ' 72

IDENTI-

FICATION

73 80

CAL ' | MASK PLACE MASK IN AC POSITIONS P, 1-35

ANS ; ! PAKWD ERASE N2 FROM PACKED WORD

CAL ! i L0CN4 PLACE N4 INTO POSITIONS P, 1-10 OF AC

ARS ;
i
14 SHIFT N4 INTO POSITIONS 14-24 OF AC

ORS | ! PAKWD INSERT N4 INTO POSITIONS 14-24 OF LOCATION

' ' PAKWD. POSITIONS S.l-13 AND 25-35 UNCHANGED
1 MASK OCT i

! 777760003777 MASK TO REMOVE N2 FROM LOCATION PAKWD
..... .. , . _.

Figure 99. Packing Program

After performing the desired arithmetic operations

on the number N2, a new number, iV4, is the result.

This number is the same size as N2. Now this new
number is to be packed (inserted) in location padwd
replacing N2. Nl and N3 are to remain unchanged.
The program in Figure 99 will accomplish this. The
program assumes that the number Ni occupies posi-

tions S, 1-10 of location locn4. The mask used with

the ans preserves the numbers Nl and NS while re-

placing N2 with 0's.

Masking may be used to extract a full number or

portion of a word from a given location instead of

shifting and adjusting the result. Another example
is shown in Figure 100 where a number located in

positions 12-35 of location 0100 is to be extracted

and stored in location 0200. The mask used is located

in 0050 and consists of zeros in positions S-ll and
ones in positions 12-35.

The program example in Figure 101 shows a num-
ber of test instructions, the compare instruction, and
some arithmetic operations. The instruction print
means that a print routine is being used and the data
being printed are denoted by its address.

The problem is to divide A by B. If the computer
cannot handle the problem, print both A and B. If

the answer equals 7000, multiply it by C and save the

answer in location 0400. If it is less than 7000, print

the answer. If it is more than 7000 put the difference

in location 0500.

The programmer is given A in location 0100, B in

location 0101, C in location 0102, and 7000 in loca-

tion 0103.

Again the flow chart should serve as an aid in the

program steps and is a reference when reading the

program.

Location Instruction Address Remarks

0000

0001

0002

0003

CLA
ANA
STO
HTR

0100

0050

0200

Put the number in accumulator

Extract positions 12-35

Store the result, properly aligned.

Figure 100. Masking Program

Divide A by B

Number too large

0000 LDQ 0100

0001 DVP 0101

0002 DCT

0003 TRA 0022

0004 STQ 0105

^Compare answer againsF> 0005 CLA 0105

ZOOO^^"" 0006 CAS 0103

0007 TRA 0014

Equal to 7000

I
Less than 7000

I

Print

•

Stop

Greater: subtract 7000

and store result,

then halt.

Equal to 7000; multiply

by C and store result,

then halt.

0010 TRA 0017

001 1 STO 0600

0012 Print 0600

0013 HTR

0014 SUB 0103

0015 STO 0500

0016 HTR

0017 MPY 0102
J 0020 STO 0400

0021 HTR

Numbers too large;

print A and B, then

halt.

0022 Print 0100

0023 Print 0101

0024 HTR

Figure 101. Program Example

Programming Examples 113

An example of input-output and computing is

shown in Figure 102. There are eight binary records

on tape unit 1 attached to channel A. Each record

contains ten words. The program should: (1) skip the

first three records, (2) skip the first five words of the

fourth record, (3) read the last five words of that rec-

ord, (4) skip the first five words of the fifth record,

and (5) read the last five words of the fifth record.

Put the ten words read into binary print using the

printer attached to channel C. Simultaneously with

the reading, solve (B + C) X D and store the re-

sult in 0110 and 0111. B is in location 0200, C is in

location 0201, and D in location 0202.

Read tape 1, channel A;

get first command

1
Put B in accumulator.

Add C to B;

Store result.

E
Put D in MQ, then

multiply it by (A + B)

.

Store answer

and remainder .

T
Write records read from

tape on printer_
Disconnect the printer

and halt.

Skip the first

three records

Skip next five words

r
I Read last five words I

I
Skip next five words |

t

Read last five' wordsT
Disconnect the operation 0307

after printing 10 words.

0000 RTBA 1221

0001 RCHA 0300

0002 CLA 0200

0003 ADD 0201

0004 STO 0207

0005 LDQ 0202

0006 MPY 0207

0007 STO 0110

0010 STQ 0111

0011 TCOA 0011

0012. WPBC 3362

0013 RCHC 0307

0014 HTR

Input- Output Program

0300 IORPN 1000

0301 IORPN 1000

0302 IORPN 1000

0303 IOCPN (5) 1000

0304 IOCP (5) 0100

0305 IOCPN (5) 1000

0306 IOCT(5) 0105

0307 IOCD(10) 0100

Figure 102. Simultaneous Read, Write and Compute, then Print

Subroutines

It is very often necessary to repeat the same group

of instructions many times during the execution of a

program. Examples are the series of instructions nec-

essary for decimal-to-binary conversion, square root,

or computing a logical check sum. It is not desirable

to write out the necessary instructions each time a

function is needed. Instead, the instructions needed

are written only once and the main program is then

arranged to transfer to this block of instructions each

time they are required. Such a block of instructions

is called a "subroutine."

These subroutines normally perform such basic

functions that they may be used in the solution of

many types of problems. For instance, a subroutine

which computes a square root can be used in a wide

variety of problems. Another example of such a sub-

routine would be one which computes the logical

check sum for a block of words in storage.

Subroutines may be used in two ways with respect

to the main program. One method is to insert the

subroutine into the main program at the point where

it is to be used. Subroutines designed for this type of

usage are called "open-subroutines/' The open sub-

routine is "sandwiched" into a program as though it

were part of the original coding of the program. This

type of subroutine usage is normally restricted to the

cases where the main program uses the subroutine

only once.

When the main program uses a subroutine several

times, which is the common situation, it is apparent

that the open subroutine is not desirable. Here, the

second method of employing subroutines is used. The
subroutine used in these situations is called a "closed

subroutine." A closed subroutine may occur several

times within one main program, but the set of in-

structions comprising the subroutine need appear

only once. The transfer of control from the main pro-

gram to the subroutine takes place from a set of in-

structions known as the calling sequence or basic link-

age. The calling sequence transfers control to the

subroutine, tells the subroutine where to return to

the main program, and gives the subroutine any other

information required (Figures 103 and 104).

The subroutine illustrated computes the logical

check sum for a block of words in core storage. Three

parameters are needed by this subroutine. There are

the initial location of the block, the number of words

in the block, and the location for storing the resulting

check sum. The subroutine then returns control to

the main program at the instruction following the

last parameter of the calling sequence.

The calling sequence is of the form shown in Figure

103. The subroutine is of the form shown in Figure 104.

The complete transfer of control between the main

program and the subroutine is based upon the tsx

instruction. As the result of the execution of this in-

struction, the twos complement of the location link

is placed in index register 4. From the standpoint of

algebraic operation the twos complement of a number
is equivalent to the negative of the number. For ex-

ample, 1 minus (twos complement of link) is equiva-

lent to 1 minus (minus link) = I + link.

114 ibm 7090

H | LOCATION

1 ,2 6 7

OPERATION j 1 ADDRESS, TAG, DECREMENT/COUNT COMMENTS

8 J ' 72

IDENTI-

FICATION

73 80

|

LINK TSX '
! BLKSM,4 AUTOMATIC LINKING INSTRUCTION

\ ! FIRST LOCATION OF FIRST WORD IN BLOCK

! ! N NUMBER OF WORDS IN BLOCK
'

! CKSUM LOCATION FOR STORING CHECK SUM

1
""" i ! LOCATION TO WHICH CONTROL WILL BE RETURNED

Figure 103. Calling Sequence

H | LOCATION

1 .2 6 7

OPERATION 1 1 ADDRESS, TAG, DECREMENT/COUNT COMMENTS

8 ! ' 72

IDENTI-

FICATION

73 80

|
BLKSM CLA

|
! 2,4 GET NUMBER OF WORDS IN BLOCK

PAX ! i 0, 1 PLACE N IN INDEX REGISTER 1

ADD ! i 1,4 ADD LOCATION FIRST TO FORM FIRST +N

STA '
i
ADDER INITIALIZE LOGICAL ADD INSTRUCTION

CLA | !
3,4 GET LOCATION TO STORE CHECK SUM

STA i i STSUM PLACE ADDRESS IN STORE INSTRUCTION

CLM i
! CLEAR AC

j
ADDER ACL [| 0, 1 TWO INSTRUCTION LOOP FOR COMPUTING LOGICAL

TK ! ! ADDER, 1,1 CHECK SUM FOR BLOCK OF N WORDS

! STSUM SLW « i STORE CHECK SUM IN LOCATION CKSUM

TRA !
;
4,4 RETURN CONTROL TO MAIN PROGRAM

Figure 104. Subroutine to Compute Logical Check Sum

In the subroutine the instructions which make use

of this property are:

INSTRUCTION EFFECTIVE EXECUTION

CLA 2,4 cla 2 — (2's comp. LINK)

ADD 1,4 ADD 1 — (2'S COmp. LINK)

CLA 3,4 cla 3 — (2's comp. LINK)

TRA 4,4 tra 4 — (2's comp. link)

EQUIVALENT
EXECUTION

CLA LINK + 2

ADD LINK + 1

CLA LINK + 3

TRA LINK + 4

From the above table it can be seen that the sub-

routine will be able to make use of the information

found in the parameter locations of the calling se-

quence without knowledge of their exact location in

storage. Since link is a symbol representing any

location in core storage, the subroutine can thus com-

municate with the main program at any location in

the main program. By means of the tra 4,4 instruc-

tion, the subroutine has the ability to transfer control

back to the proper location in the main program.

One of the main responsibilities of a subroutine is

to insure that when control is transferred back to the

main program the status of all the registers is the same

as when control was transferred to the subroutine.

This does not apply, of course, to a subroutine de-

signed specifically to change a machine condition. For

example, in the previous illustration the contents of

index register 1 are destroyed by the subroutine. Thus,

when control is transferred back to the main pro-

gram, index register 1 may not be the same as when

control was transferred to the subroutine. The con-

tents of index register 1 may be preserved by adding

the instruction sxa save, 1 just after the instruction

cla 2, 4. The contents of xr 1 will be stored in the

address part of location save. Now, if location save is

inserted just before the tra 4,4 instruction and con-

tains the instruction axt 0,1, the original contents

of xr 1 will be replaced just before control is trans-

ferred back to the main program.

Convert Instructions

Three convert instructions are available in the com-

puter. During their execution these instructions use,

in addition to core storage, the accumulator, multi-

plier-quotient, and storage registers. Index register 1

may also be used, if desired, to receive information at

the conclusion of a convert instruction execution.

These instructions normally work with tables stored

in core storage.

These convert instructions provide the programmer

with a rapid means of performing such operations as

Programming Examples 115

BCD-to-binary and binary-to-BCD conversion, bcd arith-

metic, editing of records, and modification of collating

sequences.

When the convert instructions are used, either the

ac or the mq contains a 36-bit word that is divided

into six 6-bit binary numbers. Each 6-bit number
(sometimes referred to as a character) is treated sepa-

rately in consecutive order by the convert instruc-

tions. For the instructions crq and cvr, this 36-bit

word represents the actual word operated upon. The
cvr examines the word six bits at a time from right

to left, while crq examines the word six bits at a

time from left to right. For the caq, the contents of

the mq are examined six bits at a time from left to

right while addition of quantities found in core stor-

age, as determined by this word in the mq, takes place

in the ac.

The problem of replacing the leading zeros of a

bcd number with blanks is reduced to a short rapid

program through the use of the crq instruction. This
particular convert instruction is used because, to re-

move leading zeros, the bcd number must be tested

from left to right.

To carry out the editing (modification) of the bcd

number, it is necessary to set up a table in core stor-

age. This table has the following format:

CONTENTS

A
A + 1

A +

2

A + K

A +9
A + 10

A + 11

A + 12

A + 19

S,l 21 - 35

BCD blank (b)

BCD one
BCD two

BCD (K)

BCD nine
BCD zero

BCD one
BCD two

BCD nine

A
A + 10

A + 10

A + 10

A + 10

A+ 10

A + 10

A + 10

A+ 10

The program shown in Figure 105 will perform the

required editing operation on a bcd number of 12

digits occupying two consecutive core storage loca-

tions. The program must consider the following cases:

1. All leading zeros must be sensed and replaced

by blank characters.

2. All non-zero digits must be preserved.

3. Once a non-zero digit is found, all succeeding

zeros must be preserved.

4. If a non-zero digit is found in the high-order

six digits, the second half of the number need
not be processed.

The program is executed as follows: The high-

order six digits of the bcd number are placed in the

mq by the ldq bcdI instruction. The first table ref-

erence made by the crq A, 1,6 instruction will be at lo-

cation A + N, where N is the high-order digit in the

mq, that is, c (mq) Sfl _ 5 . If N is zero, the crq instruc-

tion will go to table location A and from this location

will replace the zero with the bcd blank character.

Since the address part of location A contains A, the

second table reference will begin at location A of the

table. Once a non-zero digit occurs, the crq instruc-

tion will make a table reference at location A + K,

where K is the non-zero digit. Location A + K con-

tains K in positions S,l-5 and A + 10 in the address

part. Thus, the value K will replace the number K
and this insures that the non-zero digits will be pre-

served. Once the first non-zero digit is found, only

the second part of the table, location A + 10 through
A + 19, is used. This insures that zeros following the

first non-zero will be replaced with zeros instead of

blanks. Figure 106 illustrates the execution of the

convert instruction using the bcd number 000307.

When all six of the bcd digits have been tested (the

count reduced to zero), the execution of the crq in-

struction is terminated. Since the instruction contains

a tag of one, the address part of the last table refer-

ence location will be placed in index register 1. After

START

OUT

LDQ

CRQ

STQ

TXH

LDQ

CRQ

STQ

Figure 105. Edit Program

ADDRESS, TAG, DECREMENT/COUNT

BCDI

A, 1,6

BCDI

OUT,l,A

BCD2

A, 0,6

BCD2

LOAD HIGH ORDER SIX DIGITS INTO MQ
EDIT HIGH ORDER SIX DIGITS

STORE EDITED DIGITS

TEST FOR NON-ZERO THIS HALF
LOAD LOW ORDER SIX DIGITS INTO MQ
EDIT LOW ORDER SIX DIGITS

STORE EDITED LOW ORDER DIGITS

PROGRAM CONTINUES HERE

IDENTI-

FICATION

116 ibm 7090

storing the edited bcd number (stq bcdI) the con-

tents of index register 1 are then compared with the

number A by the txh out,1,A instruction. If the

index register contains A, then all six of the high-

order bcd digits were zero and the program will con-

tinue to examine the remaining digits in the number.

If the index register contains A+10, this indicates

that a non-zero digit was found in the high-order six

digits. Thus, the low-order digits need not be proc-

essed and control is transferred to location out.

The convert instruction cvr can be used to perform

bcd addition without having to rely on a complex

logical routine. The cvr instruction is used in this

application since it is necessary to process the decimal

sum from right to left to provide for carries from

one position to the next. The program which will

add two 6-digit unsigned bcd numbers is shown in

Figure 107. This program insures that the following

conditions are satisfied.

1. Any position of the sum that does not produce

a carry must be preserved.

2. Any position of the sum that does produce a

carry must be modified with the carry propa-

gated to the next position.

3. A test must be made to determine whether or

not a carry occurs out of the high-order posi-

tion. If such a carry does occur, a one must be

placed in the next highest word location.

C(MQ) Count C(SR) C(MQ) + C(SR) = X C(X) Remarks
5,1-5 6-1112-16 17-23 24-29 30-35 S,l-5 21-35 S,1-5 21-35 S,l-5 21-35

3 7

/ / / / /
6

5 b

A

A

A A+0 b A Start cycle 1

End cycle 1

3 7b
/ / / / /

3' 0' 7 b b

5

4

b

b

A

A

A A+0 b A Starr cycle 2

End cycle 2

3 7 b b 4

3

b

b

A

A

A A+0 b A Start cycle 3

End cycle 3

vvvw
7' b' b b 3

3

2

b

3

A

A+10

3 A A+3 3 A+10 Start cycle 4

End cycle 4

7 b b b 3

/ / / / /7' b' b' b 3'

2

1

3 A+10

A+10

A+10 A+10 A+10 Start cycle 5

End cycle 5

7 b b b 3

/ / / / /
b b b 3 7

1

7

A+10

A+10

7 A+10 A+17 7 A+10 Start cycle 6

End cycle 6

Figure 106. Execution of CRQ

H | LOCATION

f i2 6 7

OPERATION j~ 1 ADDRESS. TAG, DECREMENT/COUNT COMMENTS

8 , • 72

IDENTI-

FICATION

73 10

CAL ' ! DEC1 FIRST UNSIGNED BCD NUMBER TO AC
ADD ! i DEC2 ADD SECOND BCD NUMBER, SUM IN AC

CVR ! ! A, 1, 6 REPLACE VALUES FOR WHICH CARRIES OCCURED

SLW ' ! SUM STORE SUM

TXL
I !

OUT, 1, A TEST FOR HIGH ORDER CARRY

CLA ! ! LOCONE CARRY OCCUPIED, PLACE BCD ONE IN AC

STO i
1 SUM + 1 PLACE HIGH ORDER CARRY IN NEXT LOCATION

!
OUT

\
\

PROGRAM CONTINUES HERE

! LOCONE HTR ' ! 1

Figure 107. BCD Addition Program

Programming Examples 117

LOCATION
BCD CHARACTER
POSITIONS S-5

NEXT TABLE REFERENCE
POSITIONS 21-35

A
A + 1

A + 2

A + 9

A + 10

A+U
A + 12

A + 19

1

2

9

1

2

9

A
A
A

A
A+1
A+1
A+1

A+1

Figure 108. Table for BCD Addition

The convert instruction cvr used in the program

uses the table found in Figure 108.

The execution of this program can best be illus-

trated by the following example. The two bcd un-

signed numbers 434589 and 691593 are to be added.

The resulting sum is considered as six 6-bit numbers

(Figure 109). The low-order 6-bit number has the

value 12. Thus, the first table reference made by the

cvr A, 1,6 instruction is at location A + 12. Positions

S,l-5 of this location contain a bcd 2 which replaces

the number 12 in the ac. Positions 21-35 of this loca-

tion contain the number A+1. The address A+1
causes the next table reference to be made at location

A + 18 rather than A + 17. Thus, a carry of one

is propagated from the units to the tens position of

the sum. The execution of the cvr will end when the

count has been reduced to zero. Since this instruction

has a tag of one, the contents of the storage register

Location

Binary equivalent of BCD
Digit. Positions S, 1-19

Next table location

Positions 21-35

A
A + 1

A + 2

1 xlO5

2 x10s

B

B

B

A + 9

B

B + l

B + 2

9x10s

1 xlO4

2X104

B

C
C
C

B+9
c
C + l

C + 2

9x10*

1 xlO3

2x 103

C
D
D
D

C + 9

D
D + 1

D +2

9x103

1 x 102

2x 102

D
E

E

E

D + 9

E

E + 1

E+2

9 x 102

1 x 10

2x 10

E

F

F

F

E +9
F

F + 1

F +2

9x 10

1

2

F

F + 9 9

Figure 110. Table for BCD-to-Binary Conversion

ACCUMULATOR CONTENTS
STORAGE REGISTER

START OF CYCLE END OF CYCLE
INSTRUCTION COUNT P-5 6-11 12-17 18-23 24-29 30-35 S-5 21 -35 S-5 21-35

CAL DEC1 4 3 4 5 8 9

ADD DEC2 10 12 5 10 17 12

CVR A, 1,6 6 10v U 5 1<> 17 v 12 «. A+1

2

2 A+1

5 2 10 12 5 10 17 2 A+1 +17 8 A+1

4
X X X XX

.8 V 2 10 12 5 10 8 A+1 +10 1 A+1

3 1 8 2 10 12 5 1 A+1 +5 6 A

2
X X X X X

6 1 8 2 10 12 6 A+1

2

2 A+1

1

X X XX X
2 6 1 8 2 10 2 A+1 +10 1 A+1,\X^»,12 6 18 2 1 A+1

Figure 109. Execution of CVR

118 ibm 7090

positions 21-35 (A + 1) will be placed in index reg-

ister 1. The txl out,1,A instruction then tests the

contents of this index register. Since A + 1 is greater

than A, the program continues and a bcd 1 is placed

in positions 30-35 of location sum + 1. Had index

register 1 contained A, the program would have trans-

ferred control to location out.

Conversion from one number system to another

may be performed by the caq convert instruction.

An example of BCD-to-binary conversion is illustrated

here. The program which performs this conversion is

based upon the fact that a bcd number (e.g., 803157)

is really a sum of terms of the form:

8 X 105 + X 104 + 3 X 103

+ 1 X 102 + 5 X 10 + 7.

The binary number equivalent to a bcd number is

obtained simply by finding the sum of the binary

equivalents of each term. For this example, the binary

equivalent of 8 X 10 5 plus the binary equivalent of

X 104 plus . . . plus the binary equivalent of 7.

The table used with this program is thus divided into

six parts (Figure 110). Each section consists of ten

words, one word for each of the digits 0-9 multiplied

by a power of ten. The binary equivalent of each bcd

digit is contained in the twenty positions S-19 of each

word in the table. This is based on the fact that only

20 binary positions are necessary to represent a 6-digit

bcd number.

The caq instruction uses a straightforward table

look-up operation to build up the binary equivalent

of the bcd number, digit by digit. Each digit of the

bcd number is employed to look up its binary equiva-

lent from one of the six parts of the table. The first

bcd digit will choose its binary equivalent from the

first section (105
) of the table; the second bcd digit

will choose its equivalent from the second section of

the table; and so forth. This operation is continued

until the complete binary equivalent is formed in

positions P-19 of the ac. Caution must be taken to

choose table locations so that the sum of the locations

(as illustrated in Figure 112) will not overflow into

the resulting binary number portion of the ac.

The program in Figure 111 will perform the con-

version operation.

The execution of the caq A,0,6 instruction is illus-

trated in Figure 112. As can be seen, the sum of the

table locations B,C, . . .,F must not form a sum that

will overflow into the binary portion of the ac.

H | LOCATION

1,2 6 7

OPERATION j 1 ADDRESS, TAG, DECREMENT/COUNT COMMENTS

8 ! '

72

IDENTI-

FICATION

73 80

LDQ ' ! BCDWD LOAD BCD WORD INTO MQ
CLM ! CLEAR AC (EXCEPT FOR SIGN)

CAQ ! ! A, 0, 6 CONVERT BCD TO BINARY

ARS i
! 16 SHIFT BINARY RESULT TO PROPER POSITION

SLW 1 !
BINWD STORE BINARY RESULT

Figure 111. BCD-to-Binary Conversion Program

INSTRUCTION COUNT

ACCUMULATOR CONTENTS
(Binary equivalent)

P,l - 19 21 - 35

MQ
CONTENTS

STORAGE REGISTER

START OF CYCLE
S-19 21-35

END OF CYCLE
S-19 21-35

LDQ BCDWD 803157

CLM 0000 000 00 000 803157

CAQ A, 0,6 6 A + 8 8x10s B

5 8x10s B 031578 8xl05 B + C

4 8x105+0 B+C 315780 C+3 3x1 3 D

3 8xl05+0+3xl03 B+C+D 157803 3xl03 D + 1 1x102 E

2 8xl0s+0+3xl03+lxl02 B+C+D+E 578031 IxlO2 E + 5 5x10 F

1 8x105+0+3x103 h 1x102+5x10 B+C+D+E+F 780315 5x10 F+7 7

8x10s+0+3xl03+1xl02+5xl0+7 B+C+D+E+F 803157 7

Figure 112. Execution of CAQ

Programming Examples 119

Sense Indicators

In many applications of data-processing machines it

is desirable to have switches which can be set and
tested by the program. A special register, the sense

indicator register, provides 36 such devices. Each of

these can be turned on or off (zero or one). The
individual positions are called sense indicators.

Either singly or in groups these indicators can be
turned on or set (set to ones) or turned off or reset

(set to zeros). These indicators can be used as pro-

gram-controlled sense switches, sense lights, or selec-

tors. In addition, they are also useful in extracting

or inserting parts of words and for testing fields

within a word.

A program is often written that deals with a prob-
lem having several variations. In cases of this type,

- START

,
ui

—
SECT 1

L
IV

II

in, V
,

i,iv

SECT 2

IV

^
f i

—
SECT 3

in, V
> >

'

SECT 4 -4

| Ml, III

SECT 5

in
| l,H, III

SECT 6
11,111

1

i

—>•
SECT 7

I l,IV

SECT 8 -

1

"

OUT

Figure 113. Block Diagram of General Program

120 ibm 7090

one way of developing the general program is to con-

struct the program so that it is composed of self-

contained sections. Control in the general program is

then transferred from section to section in the se-

quence determined by the particular variation being
solved. The sense indicators may be used to direct

and monitor the desired sequence of control.

For example, a general program is composed of

eight sections and is to deal with a problem having
four variations. The eight sections and the four varia-

tions are illustrated in Figure 113. The sequence of

control necessary for each variation and the repre-

sentation of the sense indicator bits needed for the

direction of this sequence are shown in Figure 114.

VARIATION
SEQUENCE OF CONTROL
BY PROGRAM SECTION

SENSE INDICATOR
REGISTER POSITIONS
32 33 34 35

1

II

III

IV

1-2-3-4-5-6-7-8

1-4-5-6

3-7-4-5-6

3-7-8-1-2
1

1

1

1

Figure 114. Sense Indicator Pattern

Four control words are used to contain the different

bit patterns to be used in the sense indicator register

for the four different problem variations (Figure

115). The general program is started by loading the

desired control word into the sense indicator register.

LOCATIONS
CONTROL
WORD REMARKS

VARI

VARII

VARIII

VARIV

Oct 1

Oct 2

Oct 4

Oct 10

Variation 1 bit pattern for the SI register

Variation 2 bit pattern for the SI register

Variation 3 bit pattern for the SI register

Variation 4 bit pattern for the SI register

Figure 115. Problem Variations

The instructions in the general program that are

necessary for the direction of control are shown in

Figure 116.

Both the rft and rnt instructions contain masks
(in octal) in positions 18-35. These 18 bits are com-
pared with the right-most (positions 18-35) 18 bits

of the sense indicator register. The instruction lft
and lnt with the same masks could have been used
in place of the rft and rnt instructions. However,
since these instructions compare with the left-most

H | LOCATION

1 i2 6 7

OPERATION] 1 ADDRESS, TAG, DECREMENT/COUNT COMMENTS

8 i
* 72

IDENTI-

FICATION

73 80

j START LDI ! j CONWD LOAD CONTROL WORD FOR DESIRED SEQUENCE

RFT ! ! 14 INITIAL SEQUENCE TEST. SI POSITIONS 32 AND 33

TRA j i SECT3 TESTED FOR ZEROS. IF ZEROS CONTROL TO SECT1. IF

1 SECT1
1 !

NOT CONTROL TO SECT 3

RFT i
! 2 SECTION 1 END-SEQUENCE TEST. TEST POSITION 34.

TRA
J

! SECT4 IF ZERO CONTROL GOES TO SECTION 2. IF ONE,

! SECT2 ! ! CONTROL TO SECTION 4.

RFT ! ;
10 SECTION 2 END-SEQUENCE TEST. TEST POSITION 32.

TRA ! ! OUT IF ZERO CONTROL GOES TO SECTION 3. IF ONE, END-

1 SECT3
! ; OF-PROGRAM.

RFT ! 1
14 SECTION 3 END-SEQUENCE TEST. TEST POSITIONS 32

TRA | ! SECT7 AND 33. IF ZERO, CONTROL GOES TO SECTION 4. IF

I SECT4 ! | ONES, CONTROL TO SECTION 7.

! SECT5 j i CONTROL ALWAYS GOES FROM SECTION 4 TO SECTION

i ! 5.

1
SECT6

I

i CONTROL ALWAYS GOES FROM SECTION 5 TO SECTION

|
i 6.

!

i RNT | ! 1 SECTION 6 END-SEQUENCE TEST. TEST POSITION 35.

TRA ! ! OUT IF ONE, CONTROL GOES TO SECTION 7. IF ZERO, END-

! SECT7 ! i OF -PROGRAM.

RFT ! ! 4 SECTION 7 END-SEQUENCE TEST. TEST POSITION 33.

TRA ! ! SECT4 IF ZERO, CONTROL GOES TO SECTION 8. IF ONE,

|
SECT8

|
! CONTROL TO SECTION 4.

RFT ! ! 10 SECTION 8 END-SEQUENCE TEST. TEST POSITION 32.

TRA |
i SECT1 IF ONE, TRANSFER CONTROL TO SECTION 1. IF ZERO,

1 OUT ! ! END-OF PROGRAM.

Figure 116. Control Instructions in Program

18 positions (positions 0-17) of the sense indicator

register, the four commands must be changed so that

the four si positions concerned are positions 14-17.

It may be necessary to unpack a word without

affecting the accumulator or the multiplier-quotient

register. In this case, the sense indicator register may
be used for the unpacking operation. For example,

to unpack a number occupying positions 14-24 of a

packed word, a mask containing ones in positions

S, 1-1 3,25-35 is used to perform the extraction.

Programming Examples 121

Figure 117 is the program which is used to execute

the extracting. The packed word is loaded into the

si register by the ldi instruction. With the execution

of the ris instruction all the positions in the si corre-

sponding to the ones in the mask are set to zero. Thus,

as a result of the mask used, the desired number in

positions 14-24 is left intact and the remaining posi-

tions are set to zero. The number extracted from the

packed word is simply dependent on the mask used.

A companion operation to the extracting described

above is that of insertion. This may also be accom-

plished by using the si register. An example is insert-

ing a new number in positions 14-24 of the packed

word of the last example. The new number to be

inserted occupies positions 14-24 of the ac. The pro-

gram is shown in Figure 118. The packed word is

loaded into the si by the ldi instruction. The mask

used by the ris instruction sets positions 14-24 of the

si to zero. The remaining positions are unchanged.

The new number is then "oR'ed" into the packed

word by the oai instruction.

Floating Point Overflow and Underflow

During many scientific and engineering problems,

the programmer is faced with the difficulty of keep-

ing track of the decimal point. To aid in this respect,

the computer is equipped with a complete set of float-

ing point instructions. Briefly, a floating point number

is treated as a 27-bit signed proper fraction and an

8-bit characteristic which represents a signed exponent.

By the nature of floating point operation, the frac-

tion may never overflow the registers, and an under-

flow of the fraction produces a normal zero which

is a proper result. The characteristic enjoys no such

freedom. A floating point operation resulting in a

characteristic, either too large or too small for that

portion of the word set aside for it, produces a con-

dition known as floating point overflow or underflow,

respectively. These conditions are referred to collec-

tively as floating point spill.

When floating point spill occurs, the factors must

be scaled to fall within the range of the computer

registers if calculation is to continue. The exact de-

tails of this scaling usually depend upon the condi-

tions of the problem. However, the computer provides

adequate facilities to assist the programmer in decid-

ing what these conditions are and for controlling the

corrective process.

The computer may be operated in two modes with

regard to floating point operation. Normally, the com-

puter operates in floating point trap mode; that is,

the floating point trap device is normally on. This

device is referred to as "fpt." If the instruction leave

floating trap mode (lftm) is executed, the computer

operates in what is called the 704 floating point trap

mode.

IBM 704 Floating Point Trap Mode

To enter the 704 floating point trap mode, the in-

struction lftm must be executed. It is necessary be-

H | LOCATION

1 |2 6 7

OPERATION j 1 ADDRESS, TAG, DECREMENT/COUNT COMMENTS

8 , ' 72

IDENTI-

FICATION

73 80

LDI j !
PAKWD LOAD PACKED WORD INTO SI

RIS ! ! MASK MASK TO PRESERVE POSITIONS 14-24 OF SI

STI ! ! UNPAK STORE UNPACKED NUMBER INTO STORAGE

' MASK OCT | ! 777760003777 MASK TO OBTAIN POSITIONS 14-24

Figure 117. Extraction Program Using Sense Indicator

H | LOCATION

1 ,2 6 7

OPERATION
J

1 ADDRESS. TAG. DECREMENT/COUNT COMMENTS

8 , ' 72

IDENTI-

FICATION

73 80

LDI ' ! PAKWD LOAD PACKED WORD INTO SI

RIS ; i MASK MASK TO CLEAR POSITIONS 14-24

OAI I ! OR NEW NUMBER INTO POSITIONS 14-24

STI » ! PAKWD STORE NEW PACKED WORD

• MASK OCT ! ' 000017774000 MASK TO CLEAR POSITIONS 14-24

Figure 118. Insertion Program Using Sense Indicator

122 ibm 7090

cause fpt is normal in the computer. If a floating

point spill occurs while in the 704 mode, the ac-

cumulator and/or the mq overflow indicators are

turned on. Which indicator is set is determined by

the register producing the spill. Each indicator may
be tested by the program, subsequent to the spill, by

executing the proper overflow test instruction. The
mathematics involved in the following examples are

specialized to point out how the logical facilities of

the computer might be employed to detect and to

control the correction of floating point spill.

Floating Point Spill in the 704 Mode

This problem is defined below.

A body of surface area (sura) is being bombarded

by particles of some nature. The researcher has meas-

ured the number of impacts (imp) on the surface at

n discreet time intervals. At a certain point in the

calculations, the programmer wishes to know if the

following conditions exist: q < max, where max is

a constant and q is the average number of impacts per

unit area. If the inequality holds, the program is to

continue at location ok. Otherwise, program control

is to be transferred to symbolic location tobig.

All the iMPn (total impacts in the n time intervals)

are written within the range 0^iMPn < 1045 . The
iMPn are stored at symbolic locations imp to imp +
n — 1. The values n, max, and sura are known.

The original values of iMPn must remain intact. The
first step is to calculate the total impacts. If a spill

occurs, the iMPn are scaled by 2 10°, and the summa-
tion repeats. If another spill occurs, it is treated as an

irretrievable error. Note that mq spill has no effect

on this summation. The program is shown in Figure

119 and executed as described below:

Line 1. lftm must be given to enter the 704 mode.

The accumulator overflow indicator is then turned off

by the tov instruction; this is necessary because its

condition cannot be assumed.

Line 6. The impq is brought to the accumulator.

Because of the method of scaling used, zero words are

skipped over.

Line 8. Because spill detection is most useful if

the first spill is detected, scaling is accomplished with-

out using floating point. If xra is zero, scaling is

not required and the program proceeds to line 11.

If xra is not zero, scaling is required. A word con-

taining an octal 100 in the characteristic field is fixed-

point subtracted from the iMPn . This is equivalent

to floating point division by 2100 . If the accumulator

goes minus, the impu is not within the given range.

If iMPn is not in this range, control is transferred to

Ierr.

Line 11. The partial sum is added to the impd in

the accumulator. If spill does not occur, the program

proceeds with the summation; if spill does occur, xra

is set to 1 and the summation is restarted. If scaling

has already occurred, an error is indicated and con-

trol transfers to 2err.

Line 18. The mq overflow and the divide check

indicators are reset to the off position, because their

condition cannot be assumed. The fdp is then exe-

cuted and both the divide check and mq overflow

indicators are tested (mq overflow or underflow is de-

fined as a tobig condition).

Line 27. With the quotient in the accumulator and

the condition of the accumulator overflow indicator

established (lines 25 and 26), a test to find if scal-

ing has taken place is executed. If so, the word sub-

tracted in line 9 is added back to increase the charac-

teristic by 100, which is equivalent to floating point

multiplication by 2100 . An overflow at this point

(fixed point overflow) indicates that q is too big.

If scaling has not occurred, control transfers.

Line 30. max is then subtracted from the quotient.

A spill at this point is not significant; the sign of

the result establishes the range of the number. If the

accumulator is minus, the program proceeds to sym-

bolic location ok, where fpt is reset to the on posi-

tion and the main program may resume.

Floating Point Trap

Figure 119 illustrates how the interpretation of spill

depends upon the conditions prevailing when the

spill is detected. In general, the program should: (1)

detect the spill as soon as it occurs, (2) know in which

register the spill occurred, and (3) know what instruc-

tion was being executed when the spill occurred. This

information can be provided automatically by the

floating point trap.

When spill occurs with the fpt on, the computer

automatically performs the following steps:

1. The address plus 1 of the instruction causing

spill is placed in the address field of core loca-

tion 0000.

2. A four-bit code which identifies the nature of

the spill is placed in positions 14 through 17 of

core location 0000.

3. The computer takes its next instruction from

location 0010 and proceeds from there.

Programming Examples 123

To illustrate a use of fpt, the problem used in

Figure 119 is repeated using the floating-point-trap

feature. Note that, although the program is larger,

the possibilities for control are increased. Figure 120

shows that the trap routine starting at location 0010

can conditionally return to the main program or

initiate a general operation (in this case, a print pro-

gram and then halt).

The practice of continually storing certain addresses

from the main program in a standard routine is some-

times referred to as "breakpoint" programming; as

Figure 120 shows, it is an extremely powerful and

PROBLEM

CODER DATE PAGE OF

H | LOCATION

1 i2 6 7

OPERATION
j 1 ADDRESS, TAG, DECREMENT/COUNT COMMENTS

8 ! ' 72

IDENTI-

FICATION

73 80

1
| TIMP LFTM

| ! TURN OFF FPT.

2 ! TOV
! !

*+l TURN OFF ACC OVERFLOW.
3 i AXT

1 1 0,1 INITIALIZE.

4
| AXT ' in. 2

5
|

STZ ! 1 FREE

6
| CLA 1 ' IMP+N,2 GET FIRST MEASUREMENT.

7 ' TZE
j ;

TIMP+10 IF ZERO. GET NEXT MEASUREMENT.
8

|
TXL

;
!*+3,l,0 IS SCALING NECESSARY?

9 !
SUB

| ! 2HND YES, DIVIDE BY 2
100

.

10 ! TMI
|

1 1ERR ALL IMP MUST BE > 2
"200

.

11 1 FAD
J

| FREE ADD.

12
|

TNO
; !

*+3 DID SPILL OCCUR?
13

; TXH
|

j
2ERR, 1, YES, IS THIS THE FIRST SPILL?

14
!

TXI
1

!

TIMP+3, 1, 1 YES, SET INDICATION AND RESTART.
15

! TNX
i 1 DONE ,2,1 is SUM COMPLETE ? IF

16 ! STO
! '

FREE NOT, STORE PARTIAL SUM AND
17 » TRA

! ;
TIMP+5 GET NEXT MEASUREMENT.

18 ! DONE TQO
j !

*+l TURN OFF MO OV INDICATOR.
19 i DCT

I 1 TURN OFF DIVIDE CHECK INDICATOR.
20

;

nop
!

;

21 ! FDP
' !

SURA DIVIDE BY SURFACE AREA.
22

;

DCT
; 1 TEST.

23 ! TRA
!

|
TOBIG COULD NOT DIVIDE .

24
!

TQ°
!

]

TOBIG QUOTIENT OUT OF RANGE.
25

;

TOV
1 1

*+l TURN OFF ACC OVERFLOW INDICATOR.

26| XCA
J

|
QUOTIENT TO THE ACC.

27! TXL ! 1 *+3,l,0 WAS TIMP SCALED?

28i ADD 1 1 2HND YES. —MULTIPLY BY 2
100

.

29| TOV
j 1

TOBIG FIXED POINT OVERFLOW INDICATES N TOO LARGE.
30 1 FSB

1 , MAX SUBTRACT.
31" TPL

1 1 TOBIG Q>MAX.
32 1 TRA

| ! OK Q IS OK, PROCEED.

33| FREE BSS 111
34| 2HND OCT ! ! 100000000000

35i OK EFTM
|

' TURN ON FPT.
361 PROCEED WITfH |MAIN PROGRAM.

!

•

• '

Figure 119. Floating-point Spill, 704 Mode

124 ibm 7090

PROBLEM

CODER 1 DATE PAGE OF

H | LOCATION

1 i2 6 7

OPERATION j 1 ADDRESS, TAG, DECREMENT/COUNT COMMENTS

8 1 • 72

IDENTI-

FICATION

73 80

1 1 TIMP STZ | ! CLEAR.

2 ! AXT ! 1
SPILL, 1 SET CONTROL ADDRESS IN THE

3 i SXA ! 1 8,1 FPT CONTROL ROUTINE.

4
|

AXT
; 1

0,2 INITIALIZE

5
|

ADD AXT ! ! N,l

6
|

STZ 1 ' FREE
7

!

CLA | !
IMP+N.l FIRST MEASUREMENT.

8
|

TXL
[! ++4,2,0 IS SCALING NEEDED?

9
!

TZE ! !
*+3 YES, BUT SKIP ZEROS.

10 i SUB ' 1 2HND DIVIDE BY 2
100

.

111 TMI
!

\

1ERR SHOULD NOT BE MINUS.

12' FAD ! ! FREE ADD

13! STO !]
FREE STORE PARTIAL SUM.

14| TDC ! *-7.1,l CONTINUE
is! TRA ! ! PROC SUM COMPLETE, PROCEED.

16 ! SPILL TXI [.
" *+l,2.1 GET CONTROL. SET SCALE SIGNAL.

17
J

STO I

! FREE SAVE PARTIAL SUM
18! CAL

; ! GET WORD AT LOCATION 0000,

19i ARS ! 1 19 MO UNDERFLOW IS NOT SIGNIFICANT.

20] TNZ
! ;

*+2 ACCUMULATOR SPILL IF NOT ZERO.

21

!

TXI 1 ! SPILL-2,2,32767 MAKE XRB = AND PROCEED.

22j TXH j 1 2ERR.2.1 ERROR IF A SECOND SPILL.

23; TRA !
]
ADD RESTART SUM WITH SCALING

24 ! PROC AXT |
]
SPIL2.1 NEW CONTROL ADDRESS FOR

25! SXA ! [8,1 FPT CONTROL ROUTINE.

26
|

DCT ; ! TURN INDICATOR OFF.

27 ! NOP ! 1

28
!

FDP ! | SURA DIVIDE BY SURFACE AREA.

29
|

DCT ' 1 TEST DIVIDE CHECK INDICATOR.

30
|

TRA ! ! TOBIG NUMBER IS OUT OF RANGE.

31 • TOV 1 1 *+l TURN INDICATOR OFF.

32 ' XCA 1 ; MQ TO ACCUMULATOR.
33

]

TXL ;
!
*+3,2,0 WAS MQ SCALED?

34! ADD !
!
2HND YES, MULTIPLY BY 2

100
.

35 ! TOV • 1 TOBIG NUMBER IS OUT OF RANGE.

36 1 FSB !
j
MAX CHECK MAX.

37
j

TPL ! ,' TOBIG NUMBER IS OUT OF RANGE IF PLUS.

38

;

TRA j ! OK CONTINUE.

39 ,
FREE BSS !

!

40 ! 2HND OCT ! ! 100000000000

41
! OK AXT ; 1 OK, 1 NEW CONTROL ADDRESS.

42

;

SXA ! j
8,1

43! PROCEED WI
(

TH MAIN PROGRAM
44 1 SPIL2 TRA ! ! *+l TAKE CONTROL-

45
j

LXD ! !
0,1 GET SPILL INDICATOR CODE.

in TXL • ! *+3.1.8 IF NOT FDP, RETURN TO ROUTINE.

47
!

TXH ; 1 TOBIG, 1, 10 SPILL IN ACC ALONE IS NOT SIGNIFICANT.

4ft
j

TXT. !
' TOBIG, 1,9 MQ SPILL MEANS QUOTIENT IS OUT OF RANGE.

49 ! TRA* • 1 CONTINUE ROUTINE IF OK.

50 ! 0010 XEC ! 1 ADDRESS SUPPLIED BY THE PROGRAM.

51 1 STQ ! iFPO+2 IF CONTROL REMAINS HERE.

52! STO
J

iFPO+1 THEN PROGRAM IS FINISHED.

53
|

LRS ! 133 GO INTO PRINT

54| STA ' 'FPO ROUTINE AND
55

!

TSX | ! PRINT. 4 PRINT. THEN
56

!
HTR ! ! STOP.

Figure 120. Floating-Point Trap

Programming Examples 125

flexible technique. Note the use made of the decre-

ment bits at location 0000 and a use of the address

field of location 0000 in the routine spil2.

Line 1. Location 0000 is cleared to erase any data

that may have been placed in it by a previous routine.

The symbolic address spill is placed in the xec in-

struction located at 0010. This causes the trap rou-

tine to return control to this program. Note: a post-

mortem print that prints location 0010 informs the

programmer that his program has passed this point.

Line 16. The txi instruction regains control of the

program from the trap routine, and sets the scaling

signal by placing a 1 in xrb. Recall that an mq spill

was not significant at this point; therefore, with the

partial sum stored, the bit code in the decrement por-

tion of location 0000 is checked. If position 17 has

a 1 while positions 14, 15, and 16 have 0's, the sum-

mation is continued and xrb is set to zero (line 21) .

Line 22. If scaling has already been in progress, a

second spill is defined as an error.

Line 24. A new control address is placed at loca-

tion 0010, because a spill in the following routines is

to be treated in a different fashion. (Again, the ad-

dress field of location 0010 can inform the program-

mer that this point of the program has been proc-

essed) .

Line 35. Note that the accumulator overflow in-

dicator is related to fixed-point operations only, when
the fpt is on.

Line 44. The transfer instruction seizes control

from the trap routine. The decision is made as fol-

lows:

1. If the spill occurred in the fsb instruction, the

octal code in the decrement of location zero is

less than 0010. Such a spill is not significant

and a return to the routine is made by an in-

directly addressed tra instruction.

If the spill occurred in the accumulator alone

(on fdp) , the octal code in the decrement of

location 0000 is not greater than 0012 and not

less than or equal to 0011. Accumulator spill,

alone, at the fdp instruction is not significant.

With an mq spill, the conditions just stated are

not met; the program proceeds to tobig loca-

tion (mq overflow or underflow is defined as a

tobig condition)

.

Writing a Format Track

Format track data organization in core storage is

shown in Figure 121. The accompanying program list-

ing shows all octal and symbolic notations with ap-

propriate comments. The format track shown in Fig-

ure 121 is made up as follows:

1. Gap 1, home address 1 (haI) , and gap 2 are

called the track identifier area and consist of 24 char-

acters. They must be written with eight-bit mode
characters. The remainder of the format track may
be written with either six-bit or eight-bit mode char-

acters, according to the requirements of the data track.

Six-bit mode characters are used in Figure 121.

2. Home address 2 (ha2) and the X gap are called

the home address area 2 and consist of 22 characters.

3. The record address (ra) and the Y gap are

called the record address area 1 and consist of 22

characters. Record address area 2 consists of four

characters of the data record (synchronization) , a sin-

gle character gap 3, and 11 characters after gap 3.

The last 12 characters are automatically written by

the 7631. The entire record address area equals 38

characters.

-Track Identifier - tHome Address Area Record Address Area

(2)
I

(1) II (2)

4443333333334333333333341 1111111 1 12222222222221 1 11 1 1 1 1 1 121 1 1 1 1 1 11 1 121 11 1))11 1 1 1 121 1 1 1
1-

apf^-lGapU-HAl->4<— Gap- -HA2- - X Gap ->+<- RA -YGap

>J-*Data>|<-

1211-""""""

Record Address w
Area *"

2880 Six-bit characters per track
-84 Identification and gaps

2796 Positions for data or,

466 Six-character words

Record - Gap 3 Filled by
1 7631

Track Identifier 24 characters

Home Address Area 2 22 characters

Record Address Area (1 and 2) 38 characters

84 characters

Figure 121. Format Track Core Storage Layout (Single Record)

126 ibm 7090

Write and Write Check Format Track-Write, Write

Check, and Read Single Record Operation

This program example is intended to show sample

usage of instructions, commands, and orders and has

not been tested on an operating system.

WRITE A FORMAT AT CYLINDER 0000, SINGLE RECORD PER TRACK.

CPU PROGRAM

00051 1 00000 00222 TCH CHECK INTERRUPT TRANSFER
00100 0500 00 00317 START CLA TPAD1 SET UP TRAP
00101 0601 00 00021 STO 17 ADDRESS
00102 0564 00 00316 ENB ENCHD ENABLE CHAN D
00103 -0541 00 00150 RSCD STFMT START FORMAT

00104 2 00001 1 00104 PLAY TIX *,1,1 KEEP CPU
00105 1 77776 1 00104 TXI *-l,l,-2 BUSY

00106 0000 00 00000 HTR ** NEVER STOP HERE

00107 -0641 00 00306 TRAP1 SCHD TEMPI CHECK FOR
00110 0500 00 00306 CLA TEMPI CORRECT
00111 0340 00 00307 CAS SCHD1 CHANNEL
00112 0020 00 00114 TRA *+2 STOP
00113 0020 00 00115 TRA *+2 OK

00114 0000 00 00114 HTR * ERROR

00115 0500 00 00320 CLA TPAD2 SET UP NEW
00116 0601 00 00021 STO 17 TRAP ADDRESS
00117 -0541 00 00143 RSCD WRCKF START WRITE CHECK
00120 0760 00 00014 RCT RESTORE
00121 0020 00 00104 TRA PLAY CPU BUSY
00122 0000 00 00000 HTR ** NEVER STOP HERE

00123 0000 00 00123 TRAP2 HTR * CORRECT STOP

CHANNEL PROGRAM

WRITE FORMAT TRACK

00124 0000 01 2 00311 WRFMT XMT RSTRT,, 1 POST RESTART ADDRESSES
00125 00000 00127 PZE WRFMT+3
00126 -2 40000 2 00055 LCC 45 SET UP FOR 460 WORDS
00127 2 40000 00257 CTLW DWRF WRITE FORMAT CYL 0000

00130 -0000 04 00261 COPYS CPYP FTWD1, ,4 TRACK IDENTIFICATION
00131 -0000 04 00265 CPYP FTWD2, ,4 HA2,X GAP, 2 CHAR OF RA
00132 -0000 01 00265 CPYP FTWD2, ,1 RA
00133 -0000 01 00271 CPYP FTWD6, ,1 RA,4 CHAR OF Y GAP
00134 -0000 01 00265 CPYP FTWD2, ,1 Y GAP
00135 -0000 01 00272 CPYP FTWD7, ,1 2 CHAR Y GAP, 4 CHAR RCRD
00136 -0000 12 00273 CPYP FTWD8, ,10 DATA RECORD AREA
00137 -2 40000 00136 TDC *-l 46 TIMES FOR 460 WORDS
00140 -0000 06 00273 CPYP FTWD8, ,6 6 MORE DATA WDS FOR 466
00141 -1 00001 00305 CPYD FTWD9, ,1 6 FOR 3 GAP

00142 3 40000 00142 WFEND TWT *

WRITE CHECK FORMAT TRACK

00143 0000 01 2 00311 WRCKF XMT RSTRT,, 1 POST RESTART ADDRESS
00144 00000 00146 PZE WRCKF+3
00145 -2 40000 2 00055 LCC 45
00146 2 40000 00253 CTLW DWRC1
00147 1 00000 00130 TCH COPYS

00150 0000 01 2 00310 STFMT XMT WAIT,,1 POST RETURN ADDRESSES
00151 00000 00155 PZE STFMT+5
00152 0000 01 2 00311 XMT RSTRT ,

,

1

00153 00000 00124 PZE WRFMT
00154 2 00000 00245 CTL DSEK1 SEEK ACC 0, MOD 1

00155 0000 00 00155 WTR * WAIT FOR SEEK

Programming Examples 127

Write, Write Check, and Read on
Disk Storage

Using the format written with the first program ex-

ample, the following program listing shows the main

program steps necessary to write, write check, and

then read a 466-word record (maximum) using access

0, module 1, track 0038, and record address 927601.

Both this program listing and the previous one are

intended to show sample usage of instructions, com-

mands, and orders and neither program has actually

been tested on an operating system.

CPU PROGRAM

00156 0564 00 00316
00157 -0541 00 00164

BEGIN ENB ENCHD
RSCD GO

ENABLE TRAP
START CHANNEL D

CPU IS NOW FREE TO PERFORM OTHER TASKS WHILE THE 7909 FINDS THE RECORD
AND PROCESSES IT.

00160 2 00001 1 00160
00161 1 77776 1 00160

00162 0000 00 00162

00163 0000 00 00163

00164 0000 01 2 00311
00165 00000 00172
00166 0000 01 2 00310
00167 00000 00171

TIX *,1,1
TXI *-l,l,-2

DONE HTR *

HELP HTR *

CHANNEL PROGRAM

GO XMT RSTRT,,1
PZE WRITE
XMT WAIT,,1
PZE GO+5

WAIT FOR TRAP

JOB COMPLETE

CPU STOPS HERE ON ERROR

POST RESTART ADDRESS

SEEK DISK ADDRESS 0038 AND WAIT FOR ATTENTION SIGNAL

00170 2 00000 00247
00171 0000 00 00171

00172 -2 40000 2 00011
00173 0000 01 2 00311
00174 00000 00175

CTL DSEK2
WTR *

WRITE LCC 9

XMT RSTRT,,1
PZE WRITE+3

WRITE 466 WORDS AT RECORD ADDRESS 927601

CTLW DVSR00175 2 40000 00251
00176 -0003 43 10000
00177 -0002 43 15000
00200 -1 00114 20000

00201 3 00000 00312
00202 -1 60001 2 00212
00203 3 00000 00315
00204 3 00000 2 00312

00205 -2 40000 6 00172
00206 0000 01 2 00311
00207 00000 00210

SEEK DISK ADDRESS 0038
WAIT FOR ATTENTION

NUMBER OF RETRIES
RESTART ADDRESS

VERIFY SINGLE RECORD
CPYP DATA1,,227 WRITE 466 WORDS
CPYP DATA2,,163
CPYD DATA3,,76

LAR BRANC
TCM READ,, 1,6
LAR ONE
SAR BRANC

WRCHK LCC WRITE,

4

XMT RSTRT,,1
PZE WRCHK+3

CHECK FOR WRITE CHECK DONE
GO TO READ

RELOAD NUMBER OF RETRIES
RESTART ADDRESS

WRITE CHECK RECORD AT RECORD ADDRESS 927601

00210 2 40000 00255
00211 1 00000 00176

CTLW DWRC2
TCH WRITE+4

00212 -2 40000 6 00172 READ LCC WRITE,

4

00213 0000 01 2 00311 XMT RSTRT,,1
00214 00000 00215 PZE READ+3

READ RECORD AT RECORD ADDRESS 927601

00215 2 00000 2 00251
00216 -1 00722 25000

00217 0000 01 2 00021
00220 0020 00 00162
00221 3 40000 00221

DO WRITE CHECK

RELOAD RETRIES
RESTART ADDRESS

VERIFY SINGLE RECORDCTLR DVSR
CPYD DATA4,,466 READ FULL RECORD

XMT 17,,

1

TRA DONE
TWT * WRITE-WRITE CHECK-READ

COMPLETE - TRAP CPU FOR
PROCESSING

128 ibm 7090

7909 INTERRUPT ROUTINE

00222
00223
00224
00225

00226
00227
00230
00231

00232
00233
00234

-1 00002 4 00224
1 00000 00232
2 40000 2 00000

-1 00001 00313

3 00000 00313
-1 60004 2 00231
1 00000 6 00310
1 00000 6 00311

-2 40000 00237
0000 01 2 00021
0020 00 00163

00235 3 40000 00236

00236 1 00000 6 00311

00237
00240
00241
00242
00243

00040
00020
00010
00001
00000

00244
00233
00244
00233
00233

CHECK TCM *+2,,100
TCH ERROR
SNS
CPYD SENSE,,

1

LAR SENSE
TCM *+2,,100,6
LIPT WAIT,

4

LIPT RSTRT,4

ERROR TDC *+5
XMT 17, ,1

TRA HELP

TWT *+l

LIPT RSTRT,4

WAS THIS ATTENTION 1

NO
YES
GET FIRST SENSE WORD

ACCESS 0, MODULE 1

WAIT FOR CORRECT ATTENTION
START WRITE

REDUCE TRIES
TEN TRIES DONE TRAP CPU
FOR HELP

PREPARE TO RETURN WITH STC

TCM RTRN,, 100000 CHECK FOR 1-0 CHECK
TCM ERROR+1,, 10000 SEQU CHECK CALL CPU
TCM RTRN,, 1000
TCM ERROR+1 , ,

1

TCH ERROR+1

UNUSUAL END
ADAPTER CHECK CALL CPU
POSSIBLE MULTIPLE CONDITION
CALL CPU

00244 1 00000 6 00311 RTRN LIPT RSTRT,4

7631 ORDERS

TRY AGAIN

00245 +101212011212
00246 +120100000000

00247 +101212011212
00250 +031000000000

00251 +100212011102
00252 +070612010000

00253 +100612011212
00254 +120100000000

00255 +100612011102
00256 +070612010000

00257 +100312011212
00260 +120100000000

00261 040404030303
00262 030303030303
00263 040303030303
00264 030303030304
00265 010101010101
00266 010101010202
00267 020202020202
00270 020202020101
00271 010102010101
00272 010201010101
00273 010101010101
00274 010101010101
00275 010101010101
00276 010101010101
00277 010101010101
00300 010101010101
00301 010101010101
00302 010101010101
00303 010101010101
00304 010101010101
00305 020101010101

DSEK1 OCT 101212011212 DSEK - 80

OCT 120100000000 01-0001-00

DSEK2 OCT 101212011212 DSEK - 80

OCT 031000000000 01-0038-00

DVSR OCT 100212011102 DVSR - 82
OCT 070612010000 01-9276-01

DWRC1 OCT 100612011212 DWRC - 86
OCT 120100000000 01-0001-00

DWRC2 OCT 100612011102 DWRC - 86
OCT 070612010000 01-9276-01

DWRF OCT 100312011212 DWRF - 83
OCT 120100000000 01-0001-00

FORMAT AREAS

FTWD1 BCD 4444333333333433333333334

FTWD2 BCD 1111111
FTWD3 BCD 1111122
FTWD4 BCD 1222222
FTWD5 BCD 1222211
FTWD6 BCD 1112111
FTWD7 BCD 1121111
FTWD8 BCD 5111111111111111111111111111111

BCD 51111111111111111111111111111H

FTWD9 BCD 1211111

CONSTANTS

00306 00000 00000 TEMPI PZE
00307 00142 00142 SCHD1 PZE WFEND,,WFEND
00310 00000 00000 WAIT PZE **

00311 00000 00000 RSTRT PZE **

00312 00000 00000 BRANC PZE **

00313 SENSE BSS 2

00315 +000000000001 ONE DEC 1

00316 +000000000010 ENCHD OCT 10

00317 0020 00 00107 TPAD1 TRA TRAPl
00320 0020 00 00123 TPAD2 TRA TRAP

2

ATTENTION RETURN ADDRESS
CHANNEL RETURN ADDRESS
WRITE CHECK CONTROL
LOCATION FOR SENSE WORDS

Programming Examples 129

Appendix A

Number Systems and Conversion

The common decimal notation of the commercial

and scientific world is familiar to all of us. This no-

tation is so familiar that you probably have never be-

fore questioned its use. Could it be possible that, for

some purposes, another system is more convenient?

The decision is entirely a matter of convenience. Deci-

mal notation is used because it is most familiar and

is understood by most people. However, had our

primeval ancestors developed eight fingers instead of

ten we would probably be more familiar with the octal

system and would be questioning the decimal system.

The decimal system, with its ten digits, is learned

by most people early in their training. This system

serves very well for counting purposes. Why then,

should computers which are designed to assist mathe-

maticians, or engineers and businessmen, be designed

to use the binary system of numbers?

Current digital computers use binary circuits and

the mathematics of the computers is therefore binary

in nature. The only convenient way to learn the op-

eration of a computer is to learn the binary system.

The octonary or octal system is a shorthand method
of writing long binary numbers. Octal notation is

used when discussing the computer but has no rela-

tion to the internal computer circuits.

Perhaps, as a first step, it would be well to see what
is meant by the binary system of numbers. The bi-

nary, or base-two system, uses two symbols, and
1, to represent all quantities. Counting is started in

the binary system in the same manner as in the deci-

mal system with for zero and 1 for one. At two in

the binary system it is found that there are no more
symbols to be used. It is therefore necessary to take

the same move at two in the binary system that is

taken at ten in the decimal system. This move is to

place a 1 in the next position to the left and start

again with a in the original position. A binary 10

is equivalent in this respect to a 2 in the decimal sys-

tem. Counting is continued in an analogous manner
with a carry to the next higher order every time a

two is reached instead of every time a ten is reached.

Counting in the binary system is as follows:

JARY DECIMAL BINARY DECIMAL

101 5

1 1 110 6
10 2 111 7
11 3 1000 8

100 4 1001 9

The binary system is used in computers because

all present components are inherently binary. That

is, a relay maintains its contacts either closed or open,

magnetic materials are utilized by magnetizing them

in one direction or the other, a vacuum tube is con-

veniently maintained either fully conducting or non-

conducting, or the transmission of information along

a wire may be accomplished by transmitting or not

transmitting an electrical pulse at a certain time.

Although binary numbers in general have more
terms than their decimal counterparts (about 3.3

times as many), computation in the binary system is

quite simple.

For addition, it is only necessary to remember the

following three rules:

1. Zero plus zero equals zero.

2. Zero plus one equals one.

3. One plus one equals zero with a carry of one to

the next position on the left. To see how the

rules work, consider the addition of 15 plus 7

with these numbers expressed in binary notation:

SIXTEENS EIGHTS FOURS

(1) (1) (1) (1)

1 1 1 1 =: 15

+ o. 1 1 1 = 7

(carries)

1 1 1 0-22

In the ones column we have 1 plus 1 for a sum of

and a 1 carried to the two column. In the twos

column we have 1 plus 1 for a sum of but we must

also add the carry from the ones column, making a

final sum of 1 with a carry to the fours column. The
same procedure occurs in the fours column. In the

eights column we have a 1 plus a giving a sum of

1, but adding in the carry from the fours column

makes the final sum with a carry to the sixteens

column. In this column we have plus giving a sum
of and to this we add the carry from the eights col-

umn, making a final sum of 1.

The resultant sum of the addition contains l's in

the sixteens, fours, and twos columns, which is the

binary representation of 22, the correct sum of 15 plus

7 (16 plus 4 plus 2 equals 22)

.

The rules for subtraction of binary digits are

equally simple:

1. Zero minus zero equals zero.

2. One minus one equals zero.

Appendix 131

3. One minus zero equals one.

4. Zero minus one equals one, with one borrowed
from the left.

Using the same numbers as we did in the addition,

the subtraction works as follows:

(borrows)

SIXTEENS EIGHTS FOURS TWOS ONES

1 1 1 1
- 15

- 1 1 1 = 7

-

In the ones column we have 1 minus 1 for a sum
of with no borrows. The same procedure occurs

in the twos and fours columns. In the eights column
we have 1 minus for a sum of 1. In the sixteens col-

umn we have minus for a sum of 0. With the

subtraction finished we have l's in the eights column
only, signifying the answer to be 8.

For multiplication only three rules need to be re-

membered:

1. Zero times zero equals zero.

2. Zero times one equals zero; no carries are con-

sidered.

3. One times one equals one.

The binary multiplication table is such that all that

is necessary when multiplying one number (multi-

plicand) by another (multiplier) is to examine the

multiplier digits one at a time and, each time a 1 is

found, add the multiplicand into the result, and each
time a is found add nothing. Of course, the multi-

plicand must be shifted for each multiplier digit, but
this is not different from the shifting that is done in

the decimal system.

An example of binary multiplication is 26 multi-

plied by 19:

DECIMAL BINARY

26 = 16 + 8 + + 2 + 11010

X 19= 16 + + + 2 +
roduct

1 10011

Using the above rules, the pj 11010

will be arrived at by a series 11010

of adding the multiplicand 00000
and shifting whenever 00000

a 1 is found in the 11010

multiplier. 111101110

Interpreting the binary result of the multiplication

by using the ones, twos, fours, . . . etc., system we find

that we have,

256 + 128 + 64 4-32 + + 8 + 4 + 2+0

which equals 494, thus proving the problem.
Binary division is accomplished by applying similar

concepts. From the examples of addition, subtraction,

and multiplication, it may be seen that whatever

operation the computer is working on will be accom-

plished by repetitive addition.

The computer operates internally using the binary

system. However, it is able to convert from one sys-

tem to another by use of a stored program. Thus,
input-output data may be expressed in decimal (or

any other) form when the operator finds it more con-

venient to do so.

Octal Number System

It has already been pointed out that binary numbers
require about three times as many positions as decimal

numbers to express the equivalent number. This is

not much of a problem to the computer itself. How-
ever, in talking and writing, these binary numbers are

bulky. A long string of ones and zeros cannot be

effectively transmitted from one individual to another.

Some shorthand method is necessary. The octal num-
ber system fills this need. Because of its simple rela-

tionship to binary, numbers can be converted from
one system to another by inspection. The base or

radix of the octal system is 8. This means there are

eight symbols: 0, 1, 2, 3, 4, 5, 6, and 7. There are no
8's or 9's in this number system. The important rela-

tionship to remember is that three binary positions

are equivalent to one octal position. The following

table is used constantly when working on or about the

computer.

BINARY

000

001

010

011

100

101

110

111

OCTAL

1

2

3

4

5

6

7

At this point a carry to the next higher position of

the number is necessary, since all eight symbols have
been used.

BINARY OCTAL

001 000 10

001 001 11

001 010 12

001 011 13

001 100 14

and so on.

Remember that as far as the internal circuitry of the

computer is concerned it only understands binary

132 ibm 7090

ones and zeros. The octal system is used to provide a

shorthand method of reading and writing binary

numbers.

Number Conversions

Before an attempt is made to convert numbers from

one system to another, it is best to review what a

number represents. In the demical system a number
is represented or expressed by a sum of terms. Each

individual term consists of a product of a power of

ten and some integer from to 9. For example, the

number 123 means 100 plus 20 plus 3. This may also

be expressed as:

(1 X 102) + (2 X 101) + (3 X 100)

Ten is said to be the base or radix of this system be-

cause of the role that the powers of 10 and the in-

tegers up to 10 play in the above expansion. If two

is chosen as the base, numbers are said to be repre-

sented in the binary system. Consider the binary

number 1 111 011. What do these zeros and ones

represent? They represent the coefficients of the as-

cending powers of 2. Expressed in another way the

number is:

(1 X 26) + (1 X 25) + (1 X 24) +

(1 X 23) + (0 X 22) + (1 X 2i) + (1 x 2o)

The various orders do not have the meaning of units,

tens, hundreds, thousands, etc., as in the decimal sys-

tem; instead they signify units, twos, fours, eights,

sixteens, etc. In applying the above information it

is found that the number 123 breaks down in both

systems as follows:

Similarly:

BINARY

1 111 011

DECIMAL

1 2

L
l

3

1-3 units

20 tens

100 hundreds

123

I

*— 1 units
L-2 twos— fours— 8 eights
— 16 sixteens
— 32 thirty-twos

—64 sixty-fours

723

In the octal system, a number is represented in the

same manner except that the base is 8. The digits of

the number represent the coefficients of the ascending

powers of 8. Consider the octal number:

173 = (1 X 8 2
) + (7 X 8 1

) + (3 X 8°)

= 64+56 + 3

= 123 (decimal)

Octal 173

|L-3 units

56 eights
1— 64 sixty-fours

By remembering what a number represents in the

binary or octal system, the number can be converted

to its decimal equivalent by the method shown above.

As the numbers get bigger, this method becomes quite

impossible to use. The following section provides

detailed methods for converting from one system to

another.

Integers

Decimal to Octal

Convert the decimal number 149 to its octal equiva-

lent. Rule: Divide the decimal number by 8 and de-

velop the octal number as per example.

8
I

149 Renicunder

1
18

"
2

[1
i 9

225

read

We first divided the original number to be converted

by 8. The remainder of this first division becomes the

low-order digit of the conversion (5) . We then di-

vide the quotient (received from the first division)

by 8. Again the remainder becomes a part of the an-

swer (next higher order, 2) . This is continued until

the quotient is smaller than the divisor. At this time

the final quotient is considered the high order of the

conversion (2)

.

Octal to Decimal

Convert the octal number 225 to its decimal equiva-

lent. Rule: Multiply by 8 and add, as per example.

2

X 8

I 5

16

+ 2^

18

X 8

144

+ 5-

149

The high-order digit is multiplied by 8 and the next

lower-order digit is added to the result. The resultant

answer is then multiplied by 8 and the next lower-

order digit is added to the result. When the low-

order digit has been added to the answer, the process

ends. In the following examples, where multiplication

or division is used, detailed explanations will not be

used because the operations are similar.

Appendix 133

Octal to Binary and Binary tc Octal

Rule: Express the number in binary groups of three.

OCTAL TO BINARY

2 2 5

010 010 101 = 010 010 101

Decimal to Binary

BINARY TO OCTAL

010 010 101

5 = 225

Rule: Divide the decimal number by 2 and develop
as per example; convert 149 to its binary equivalent.

2

1

149 Remainder 1

2 1 74

2 |_37

2 Q8
2 L9
2 |_4

2 L2

2 LL

1

1

1

read

= 010 010 101

Binary to Decimal

Rule: Multiply by 2 and add as per example; convert

010 010 101 to its decimal equivalent.

10 010 101

X_2
2

2

XI
4

+_0^
4

8

±1
9

18

±1
18

36

+J
37

X_2
74

74

XJ
148

±1
149

OR 10 010 101

= l(20 + 0(2«) + 0(2») + l(2*) +

(2
3
) + 1 (2

2
) + (2

1

) + 1 (2°)

= 128+16 + 4+1

= 149

Fractions

Decimal to Octal

Rule: Multiply by 8 and develop the octal number
as per example:

Read
• X 8

1 .192

X 8

1 .536

X 8

4 .288

X 8

2 .304

= .1142 +

Octal to Decimal

Rule: Express as powers of 8, add and divide as per

example:

.1142 = 1 (8-i) + 1 (8-2) + 4 (8-3) + 2 (8-4)

= 1/8 + 1/64 + 4/512 + 2/4096

= 610/4096

= .1489 plus

or .149

Octal to Binary and Binary to Octal

Rule: The same rule applies for fractions as for

whole numbers.

Example:

.1 1

.ooT ooi

4 2

100 010

.001 001

.1 1

100 010

4 2

Binary to Decimal

The same rule applies as for whole numbers; for

example:

.001 001 100 010

= 1 (2-3) + 1 (2-6) + 1 (2-7) + 1 (2-ii)

= 1/8 + 1/64 + 1/128 + 1/2048

= 305/2048

= .1489 plus

or .149

Decimal to Binary

The same rule applies as for whole numbers. For
example:

134 ibm 7090

Read
• X 2

.298

X 2

.596

X 2

1 .192

X 2

.384

X 2

.768

X 2

1 .536

X 2

1 .072

X 2

.144

X 2

.288

X 2

.576

X 2

1 .152

X 2

.304

.001 001 100 010 -f

Improper Fractions

Decimal to Binary

This requires conversion from decimal to octal and

then to binary. For example, convert 149.149 to its

binary equivalent.

8 1 149. remainder 5 ^

8
|

18.
"

2

8 [2.
"

2

read.

.192

X 8

.536

X 8

= 22511
oio oio ToT-ooT oo?

149.14910 = 225.1142

1

1

4

read. 2

4 2

100 010

010 010 101.001001 100 0102

.149

X 8

.288

X 8

.304

Binary to Decimal

This requires conversion from binary to octal and

then to decimal.

Convert to decimal:

010 010 101*001 001

= 2 2 ^•^T "T"

X.8
16

18

X_8
144

+ &+

100 010

J. j_ -L _l -1 j 1
8 • fi4 T Rio "T" 4f)Qfi512

2

4096

149.

610

4096
'

.149

As with decimal-to-binary, conversion of the integer

and fraction parts is performed independently.

Floating-Point Word

Decimal to Floating Point

Convert decimal 149.149 to normal floating-point

word.

Decimal to octal:

149.14910 = 225.1 1428

Octal to binary:

225.1142. = 010 010 101.001 001 100 0102

Binary to floating point word:

10 010 101.001 001 100 010X2o =

.10 010 101 001 001 100 010 X 28

8 + 128 = 136 (Characteristic)

10 001 000.100 10i 010 010 011 000 1 FP

Characteristic

2 1 0.4
Fraction

5 2 2 3 48

note: Word is normal if the fraction is less than 1, but greater

than or equal to one-half.

Appendix 135

Appendix B. Octal-Decimal Integer Conversion Table

0000
to

0777
(Octal)

0000
to

0511
(Decimal)

Octal Decimal

10000- 4096
20000- 8192
30000- 12288
40000-16384
50000 - 20480
60000 - 24576
70000 - 28672

1 2 3 4 5 6 7

0400 0256 0257 0258 0259 0260 0261 0262 0263
0410 0264 0265 0266 0267 0268 0269 0270 0271
0420 0272 0273 0274 0275 0276 0277 0278 0279
0430 0280 0281 0282 0283 0284 0285 0286 0287
0440 0288 0289 0290 0291 0292 0293 0294 0295
0450 0296 0297 0298 0299 0300 0301 0302 0303
0460 0304 0305 0306 0307 0308 0309 0310 0311
0470 0312 0313 0314 0315 0316 0317 0318 0319

0500 0320 0321 0322 0323 0324 0325 0326 0327
0510 0328 0329 0330 0331 0332 0333 0334 0335
0520 0336 0337 0338 0339 0340 0341 0342 0343
0530 0344 0345 0346 0347 0348 0349 0350 0351
0540 0352 0353 0354 0355 0356 0357 0358 0359
0550 0360 0361 0362 0363 0364 0365 0366 0367
0560 0368 0369 0370 0371 0372 0373 0374 0375
0570 0376 0377 0378 0379 0380 0381 0382 0383

0600 0384 0385 0386 0387 0388 0389 0390 0391
0610 0392 0393 0394 0395 0396 0397 0398 0399
0620 0400 0401 0402 0403 0404 0405 0406 0407
0630 0408 0409 0410 0411 0412 0413 0414 0415
0640 0416 0417 0418 0419 0420 0421 0422 0423
0650 0424 0425 0426 0427 0428 0429 0430 0431
0660 0432 0433 0434 0435 0436 0437 0438 0439
0670 0440 0441 0442 0443 0444 0445 0446 0447

0700 0448 0449 0450 0451 0452 0453 0454 0455
0710 0456 0457 0458 0459 0460 0461 0462 0463
0720 0464 0465 0466 0467 0468 0469 0470 0471
0730 0472 0473 0474 0475 0476 0477 0478 0479
0740 0480 0481 0482 0483 0484 0485 0486 0487
0750 0488 0489 0490 0491 0492 0493 0494 0495
0760 0496 0497 0498 0499 0500 0501 0502 0503
0770 0504 0505 0506 0507 0508 0509 0510 0511

1000 0512
to to

1777 1023
(Octal) (Decimal

1 2 3 4 5 6 7

1000 0512 0513 0514 0515 0516 0517 0518 0519
1010 0520 0521 0522 0523 0524 0525 0526 0527
1020 0528 0529 0530 0531 0532 0533 0534 0535
1030 0536 0537 0538 0539 0540 0541 0542 0543
1040 0544 0545 0546 0547 0548 0549 0550 0551
1050 0552 0553 0554 0555 0556 0557 0558 0559
1060 0560 0561 0562 0563 0564 0565 0566 0567
1070 0568 0569 0570 0571 0572 0573 0574 0575

1100 0576 0577 0578 0579 0580 0581 0582 0583
1110 0584 0585 0586 0587 0588 0589 0590 0591
1120 0592 0593 0594 0595 0596 0597 0598 0599
1130 0600 0601 0602 0603 0604 0605 0606 0607
1140 0608 0609 0610 0611 0612 0613 0614 0615
1150 0616 0617 0618 0619 0620 0621 0622 0623
1160 0624 0625 0626 0627 0628 0629 0630 0631
1170 0632 0633 0634 0635 0636 0637 0638 0639

1200 0640 0641 0642 0643 0644 0645 0646 0647
1210 0648 0649 0650 0651 0652 0653 0654 0655
1220 0656 0657 0658 0659 0660 0661 0662 0663
1230 0664 0665 0666 0667 0668 0669 0670 0671
1240 0672 0673 0674 0675 0676 0677 0678 0679
1250 0680 0681 0682 0683 0684 0685 0686 0687
1260 0688 0689 0690 0691 0692 0693 0694 0695
1270 0696 0697 0698 0699 0700 0701 0702 0703

1300 0704 0705 0706 0707 0708 0709 0710 0711

1310 0712 0713 0714 0715 0716 0717 0718 0719
1320 0720 0721 0722 0723 0724 0725 0726 0727
1330 0728 0729 0730 0731 0732 0733 0734 0735
1340 0736 0737 0738 0739 0740 0741 0742 0743
1350 0744 0745 0746 0747 0748 0749 0750 0751

1360 0752 0753 0754 0755 0756 0757 0758 0759
1370 0760 0761 0762 0763 0764 0765 0766 0767

1 2 3 4 5 6 7

1400 0768 0769 0770 0771 0772 0773 0774 0775
1410 0776 0777 0778 0779 0780 0781 0782 0783
1420 0784 0785 0786 0787 0788 0789 0790 0791
1430 0792 0793 0794 0795 0796 0797 0798 0799
1440 0800 0801 0802 0803 0804 0805 0806 0807
1450 0808 0809 0810 0811 0812 0813 0814 0815
1460 0816 0817 0818 0819 0820 0821 0822 0823
1470 0824 0825 0826 0827 0828 0829 0830 0831

1500 0832 0833 0834 0835 0836 0837 0838 0839
1510 0840 0841 0842 0843 0844 0845 0846 0847
1520 0848 0849 0850 0851 0852 0853 0854 0855
1530 0856 0857 0858 0859 0860 0861 0862 0863
1540 0864 0865 0866 0867 0868 0869 0870 0871
1550 0872 0873 0874 0875 0876 0877 0878 0879
1560 0880 0881 0882 0883 0884 0885 0886 0887
1570 0888 0889 0890 0891 0892 0893 0894 0895

1600 0896 0897 0898 0899 0900 0901 0902 0903
1610 0904 0905 0906 0907 0908 0909 0910 0911
1620 0912 0913 0914 0915 0916 0917 0918 0919
1630 0920 0921 0922 0923 0924 0925 0926 0927
1640 0928 0929 0930 0931 0932 0933 0934 0935
1650 0936 0937 0938 0939 0940 0941 0942 0943
1660 0944 0945 0946 0947 0948 0949 0950 0951
1670 0952 0953 0954 0955 0956 0957 0958 0959

1700 0960 0961 0962 0963 0964 0965 0966 0967
1710 0968 0969 0970 0971 0972 0973 0974 0975
1720 0976 0977 0978 0979 0980 0981 0982 0983
1730 0984 0985 0986 0987 0988 0989 0990 0991
1740 0992 0993 0994 0995 0996 0997 0998 0999
1750 1000 1001 1002 1003 1004 1005 1006 1007
1760 1008 1009 1010 1011 1012 1013 1014 1015
1770 1016 1017 1018 1019 1020 1021 1022 1023

136 ibm 7090

Octal-Decimal Integer Conversion Table

1 2 3 4 5 6 7

2000 1024 1025 1026 1027 1028 1029 1030 1031
2010 1032 1033 1034 1035 1036 1037 1038 1039
2020 1040 1041 1042 1043 1044 1045 1046 1047
2030 1048 1049 1050 1051 1052 1053 1054 1055
2040 1056 1057 1058 1059 1060 1061 1062 1063
2050 1064 1065 1066 1067 1068 1069 1070 1071
2060 1072 1073 1074 1075 1076 1077 1078 1079
2070 1080 1081 1082 1083 1084 1085 1086 1087

2100 1088 1089 1090 1091 1092 1093 1094 1095
2110 1096 1097 1098 1099 1100 1101 1102 1103
2120 1104 1105 1106 1107 1108 1109 1110 1111
2130 1112 1113 1114 1115 1116 1117 1118 1119
2140 1120 1121 1122 1123 1124 1125 1126 1127
2150 1128 1129 1130 1131 1132 1133 1134 1135
2160 1136 1137 1138 1139 1140 1141 1142 1143
2170 1144 1145 1146 1147 1148 1149 1150 1151

2200 1152 1153 1154 1155 1156 1157 1158 1159
2210 1160 1161 1162 1163 1164 1165 1166 1167
2220 1168 1169 1170 1171 1172 1173 1174 1175
2230 1176 1177 1178 1179 1180 1181 1182 1183
2240 1184 1185 1186 1187 1188 1189 1190 1191
2250 1192 1193 1194 1195 1196 1197 1198 1199
2260 1200 1201 1202 1203 1204 1205 1206 1207
2270 1208 1209 1210 1211 1212 1213 1214 1215

2300 1216 1217 1218 1219 1220 1221 1222 1223
2310 1224 1225 1226 1227 1228 1229 1230 1231
2320 1232 1233 1234 1235 1236 1237 1238 1239
2330 1240 1241 1242 1243 1244 1245 1246 1247
2340 1248 1249 1250 1251 1252 1253 1254 1255
2350 1256 1257 1258 1259 1260 1261 1262 1263
2360 1264 1265 1266 1267 1268 1269 1270 1271
2370 1272 1273 1274 1275 1276 1277 1278 1279

1 2 3 4 5 6 7

2400 1280 1281 1282 1283 1284 1285 1286 1287
2410 1288 1289 1290 1291 1292 1293 1294 1295
2420 1296 1297 1298 1299 1300 1301 1302 1303
2430 1304 1305 1306 1307 1308 1309 1310 1311
2440 1312 1313 1314 1315 1316 1317 1318 1319
2450 1320 1321 1322 1323 1324 1325 1326 1327
2460 1328 1329 1330 1331 1332 1333 1334 1335
2470 1336 1337 1338 1339 1340 1341 1342 1343

2500 1344 1345 1346 1347 1348 1349 1350 1351
2510 1352 1353 1354 1355 1356 1357 1358 1359
2520 1360 1361 1362 1363 1364 1365 1366 1367
2530 1368 1369 1370 1371 1372 1373 1374 1375
2540 1376 1377 1378 1379 1380 1381 1382 1383
2550 1384 1385 1386 1387 1388 1389 1390 1391
2560 1392 1393 1394 1395 1396 1397 1398 1399
2570 1400 1401 1402 1403 1404 1405 1406 1407

2600 1408 1409 1410 1411 1412 1413 1414 1415
2610 1416 1417 1418 1419 1420 1421 1422 1423
2620 1424 1425 1426 1427 1428 1429 1430 1431
2630 1432 1433 1434 1435 1436 1437 1438 1439
2640 1440 1441 1442 1443 1444 1445 1446 1447
2650 1448 1449 1450 1451 1452 1453 1454 1455
2660 1456 1457 1458 1459 1460 1461 1462 1463
2670 1464 1465 1466 1467 1468 1469 1470 1471

2700 1472 1473 1474 1475 1476 1477 1478 1479
2710 1480 1481 1482 1483 1484 1485 1486 1487
2720 1488 1489 1490 1491 1492 1493 1494 1495
2730 1496 1497 1498 1499 1500 1501 1502 1503
2740 1504 1505 1506 1507 1508 1509 1510 1511
2750 1512 1513 1514 1515 1516 1517 1518 1519
2760 1520 1521 1522 1523 1524 1525 1526 1527
2770 1528 1529 1530 1531 1532 1533 1534 1535

2000 1024
to to

2777 1535
(Octal) (Decimal)

Octal Decimal

10000- 4096
20000 - 8192
30000- 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

1 2 3 4 5 6 7

3000 1536 1537 1538 1539 1540 1541 1542 1543

3010 1544 1545 1546 1547 1548 1549 1550 1551

3020 1552 1553 1554 1555 1556 1557 1558 1559
3030 1560 1561 1562 1563 1564 1565 1566 1567

3040 1568 1569 1570 1571 1572 1573 1574 1575

3050 1576 1577 1578 1579 1580 1581 1582 1583
3060 1584 1585 1586 1587 1588 1589 1590 1591

3070 1592 1593 1594 1595 1596 1597 1598 1599

3100 1600 1601 1602 1603 1604 1605 1606 1607

3110 1608 1609 1610 1611 1612 1613 1614 1615

3120 1616 1617 1618 1619 1620 1621 1622 1623

3130 1624 1625 1626 1627 1628 1629 1630 1631

3140 1632 1633 1634 1635 1636 1637 1638 1639

3150 1640 1641 1642 1643 1644 1645 1646 1647

3160 1648 1649 1650 1651 1652 1653 1654 1655

3170 1656 1657 1658 1659 1660 1661 1662 1663

3200 1664 1665 1666 1667 1668 1669 1670 1671
3210 1672 1673 1674 1675 1676 1677 1678 1679
3220 1680 1681 1682 1683 1684 1685 1686 1687
3230 1688 1689 1690 1691 1692 1693 1694 1695
3240 1696 1697 1698 1699 1700 1701 1702 1703
3250 1704 1705 1706 1707 1708 1709 1710 1711
3260 1712 1713 1714 1715 1716 1717 1718 1719
3270 1720 1721 1722 1723 1724 1725 1726 1727

3300 1728 1729 1730 1731 1732 1733 1734 1735
3310 1736 1737 1738 1739 1740 1741 1742 1743
3320 1744 1745 1746 1747 1748 1749 1750 1751
3330 1752 1753 1754 1755 1756 1757 1758 1759
3340 1760 1761 1762 1763 1764 1765 1766 1767
3350 1768 1769 1770 1771 1772 1773 1774 1775
3360 1776 1777 1778 1779 1780 1781 1782 1783
3370 1784 1785 1786 1787 1788 1789 1790 1791

1

3400

3410
3420
3430
3440
3450
3460
3470

3500
3510
3520
3530
3540
3550
3560
3570

3600
3610
3620
3630
3640
3650
3660
3670

3700
3710
3720
3730
3740
3750
3760
3770

1

1792

1800
1808

1816

1824
1832

1840
1848

1856
1864

1872

1880
1888
1896
1904

1912

1920
1928
1936

1944

1952

1960
1968

1976

1984

1992

2000
2008
2016

2024
2032
2040

1793
1801

1809
1817
1825
1833

1841

1849

1857
1865

1873
1881

1889
1897
1905
1913

1921

1929
1937
1945
1953
1961

1969

1977

1985

1993

2001
2009
2017
2025
2033
2041

1794

1802

1810
1818
1826
1834

1842
1850

1858
1866

1874

1882

1890
1898

1906

1914

1795 1796
1803 1804
1811 1812

1819 1820
1827 1828
1835 1836

1843 1844
1851 1852

1859

1867

1875
1883
1891

1899

1907

1915

1922 1923

1930 1931

1938 1939
1946 1947
1954 1955

1962 1963
1970 1971

1978 1979

1986

1994

2002
2010
2018
2026
2034
2042

1987

1995
2003
2011

2019
2027
2035
2043

1860
1868

1876
1884

1892

1900
1908

1916

1924

1932

1940
1948

1956

1964

1972

1980

1988

1996
2004
2012

2020
2028
2036
2044

1797 1798 1799
1805 1806 1807

1813 1814 1815
1821 1822 1823
1829 1830 1831
1837 1838 1839

1845 1846 1847

1853 1854 1855

1861 1862 1863
1869 1870 1871

1877 1878 1879
1885 1886 1887

1893 1894 1895

1901 1902 1903

1909 1910 1911

1917 1918 1919

1925 1926 1927
1933 1934 1935
1941 1942 1943
1949 1950 1951

1957 1958 1959
1965 1966 1967
1973 1974 1975
1981 1982 1983

1989

1997

2005

2013
2021

2029
2037
2045

1990
1998
2006
2014
2022
2030
2038
2046

1991

1999

2007
2015
2023
2031

2039
2047

3000 1536
to to

3777 2047
(Octal) (Decimal)

Appendix 137

Octal-Decimal Integer Conversion Table

4000 2048
to to

4777 2559
(Octal) (Decimal)

Octal Decimal

10000- 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

1 2 3 4 5 6 7

4000 2048 2049 2050 2051 2052 2053 2054 2055

4010 2056 2057 2058 2059 2060 2061 2062 2063

4020 2064 2065 2066 2067 2068 2069 2070 2071

4030 2072 2073 2074 2075 2076 2077 2078 2079

4040 2080 2081 2082 2083 2084 2085 2086 2087

4050 2088 2089 2090 2091 2092 2093 2094 2095

4060 2096 2097 2098 2099 2100 2101 2102 2103

4070 2104 2105 2106 2107 2108 2109 2110 2111

4100 2112 2113 2114 2115 2116 2117 2118 2119

4110 2120 2121 2122 2123 2124 2125 2126 2127

4120 2128 2129 2130 2131 2132 2133 2134 2135

4130 2136 2137 2138 2139 2140 2141 2142 2143

4140 2144 2145 2146 2147 2148 2149 2150 2151

4150 2152 2153 2154 2155 2156 2157 2158 2159

4160 2160 2161 2162 2163 2164 2165 2166 2167

4170 2168 2169 2170 2171 2172 2173 2174 2175

4200 2176 2177 2178 2179 2180 2181 2182 2183

4210 2184 2185 2186 2187 2188 2189 2190 2191

4220 2192 2193 2194 2195 2196 2197 2198 2199

4230 2200 2201 2202 2203 2204 2205 2206 2207

4240 2208 2209 2210 2211 2212 2213 2214 2215

4250 2216 2217 2218 2219 2220 2221 2222 2223

4260 2224 2225 2226 2227 2228 2229 2230 2231

4270 2232 2233 2234 2235 2236 2237 2238 2239

4300 2240 2241 2242 2243 2244 2245 2246 2247

4310 2248 2249 2250 2251 2252 2253 2254 2255

4320 2256 2257 2258 2259 2260 2261 2262 2263

4330 2264 2265 2266 2267 2268 2269 2270 2271

4340 2272 2273 2274 2275 2276 2277 2278 2279

4350 2280 2281 2282 2283 2284 2285 2286 2287

4360 2288 2289 2290 2291 2292 2293 2294 2295

4370 2296 2297 2298 2299 2300 2301 2302 2303

1 2 3 4 5 6 7

4400 2304 2305 2306 2307 2308 2309 2310 2311

4410 2312 2313 2314 2315 2316 2317 2318 2319

4420 2320 2321 2322 2323 2324 2325 2326 2327

4430 2328 2329 2330 2331 2332 2333 2334 2335

4440 2336 2337 2338 2339 2340 2341 2342 2343

4450 2344 2345 2346 2347 2348 2349 2350 2351

4460 2352 2353 2354 2355 2356 2357 2358 2359

4470 2360 2361 2362 2363 2364 2365 2366 2367

4500 2368 2369 2370 2371 2372 2373 2374 2375

4510 2376 2377 2378 2379 2380 2381 2382 2383

4520 2384 2385 2386 2387 2388 2389 2390 2391

4530 2392 2393 2394 2395 2396 2397 2398 2399

4540 2400 2401 2402 2403 2404 2405 2406 2407

4550 2408 2409 2410 2411 2412 2413 2414 2415

4560 2416 2417 2418 2419 2420 2421 2422 2423

4570 2424 2425 2426 2427 2428 2429 2430 2431

4600 2432 2433 2434 2435 2436 2437 2438 2439
4610 2440 2441 2442 2443 2444 2445 2446 2447
4620 2448 2449 2450 2451 2452 2453 2454 2455
4630 2456 2457 2458 2459 2460 2461 2462 2463
4640 2464 2465 2466 2467 2468 2469 2470 2471

4650 2472 2473 2474 2475 2476 2477 2478 2479
4660 2480 2481 2482 2483 2484 2485 2486 2487
4670 2488 2489 2490 2491 2492 2493 2494 2495

4700 2496 2497 2498 2499 2500 2501 2502 2503
4710 2504 2505 2506 2507 2508 2509 2510 2511
4720 2512 2513 2514 2515 2516 2517 2518 2519
4730 2520 2521 2522 2523 2524 2525 2526 2527
4740 2528 2529 2530 2531 2532 2533 2534 2535
4750 2536 2537 2538 2539 2540 2541 2542 2543
4760 2544 2545 2546 2547 2548 2549 2550 2551
4770 2552 2553 2554 2555 2556 2557 2558 2559|

5000 2560
to to

5777 3071

(Octal) (Decimal)

1 2 3 4 5 6 7

5000 2560 2561 2562 2563 2564 2565 2566 2567
5010 2568 2569 2570 2571 2572 2573 2574 2575
5020 2576 2577 2578 2579 2580 2581 2582 2583
5030 2584 2585 2586 2587 2588 2589 2590 2591
5040 2592 2593 2594 2595 2596 2597 2598 2599
5050 2600 2601 2602 2603 2604 2605 2606 2607
5060 2608 2609 2610 2611 2612 2613 2614 2615
5070 2616 2617 2618 2619 2620 2621 2622 2623

5100 2624 2625 2626 2627 2628 2629 2630 2631
5110 2632 2633 2634 2635 2636 2637 2638 2639
5120 2640 2641 2642 2643 2644 2645 2646 2647
5130 2648 2649 2650 2651 2652 2653 2654 2655
5140 2656 2657 2658 2659 2660 2661 2662 2663
5150 2664 2665 2666 2667 2668 2669 2670 2671
5160 2672 2673 2674 2675 2676 2677 2678 2679
5170 2680 2681 2682 2683 2684 2685 2686 2687

5200 2688 2689 2690 2691 2692 2693 2694 2695
5210 2696 2697 2698 2699 2700 2701 2702 2703
5220 2704 2705 2706 2707 2708 2709 2710 2711
5230 2712 2713 2714 2715 2716 2717 2718 2719
5240 2720 2721 2722 2723 2724 2725 2726 2727
5250 2728 2729 2730 2731 2732 2733 2734 2735
5260 2736 2737 2738 2739 2740 2741 2742 2743
5270 2744 2745 2746 2747 2748 2749 2750 2751

5300 2752 2753 2754 2755 2756 2757 2758 2759

5310 2760 2761 2762 2763 2764 2765 2766 2767
5320 2768 2769 2770 2771 2772 2773 2774 2775
5330 2776 2777 2778 2779 2780 2781 2782 2783
5340 2784 2785 2786 2787 2788 2789 2790 2791

5350 2792 2793 2794 2795 2796 2797 2798 2799

5360 2800 2801 2802 2803 2804 2805 2806 2807

5370 2808 2809 2810 2811 2812 2813 2814 2815

1 2 3 4 5 6 7

5400 2816 2817 2818 2819 2820 2821 2822 2823
5410 2824 2825 2826 2827 2828 2829 2830 2831
5420 2832 2833 2834 2835 2836 2837 2838 2839
5430 2840 2841 2842 2843 2844 2845 2846 2847
5440 2848 2849 2850 2851 2852 2853 2854 2855
5450 2856 2857 2858 2859 2860 2861 2862 2863
5460 2864 2865 2866 2867 2868 2869 2870 2871
5470 2872 2873 2874 2875 2876 2877 2878 2879

5500 2880 2881 2882 2883 2884 2885 2886 2887
5510 2888 2889 2890 2891 2892 2893 2894 2895
5520 2896 2897 2898 2899 2900 2901 2902 2903
5530 2904 2905 2906 2907 2908 2909 2910 2911
5540 2912 2913 2914 2915 2916 2917 2918 2919
5550 2920 2921 2922 2923 2924 2925 2926 2927
5560 2928 2929 2930 2931 2932 2933 2934 2935
5570 2936 2937 2938 2939 2940 2941 2942 2943

5600 2944 2945 2946 2947 2948 2949 2950 2951

5610 2952 2953 2954 2955 2956 2957 2958 2959
5620 2960 2961 2962 2963 2964 2965 2966 2967

5630 2968 2969 2970 2971 2972 2973 2974 2975
5640 2976 2977 2978 2979 2980 2981 2982 2983
5650 2984 2985 2986 2987 2988 2989 2990 2991

5660 2992 2993 2994 2995 2996 2997 2998 2999
5670 3000 3001 3002 3003 3004 3005 3006 3007

5700 3008 3009 3010 3011 3012 3013 3014 3015
5710 3016 3017 3018 3019 3020 3021 3022 3023
5720 3024 3025 3026 3027 3028 3029 3030 3031
5730 3032 3033 3034 3035 3036 3037 3038 3039
5740 3040 3041 3042 3043 3044 3045 3046 3047

5750 3048 3049 3050 3051 3052 3053 3054 3055
5760 3056 3057 3058 3059 3060 3061 3062 3063
5770 3064 3065 3066 3067 3068 3069 3070 3071

138 ibm 7090

Octal-Decimal Integer Conversion Table

1 2 3 4 5 6 7

6000 3072 3073 3074 3075 3076 3077 3078 3079
6010 3080 3081 3082 3083 3084 3085 3086 3087

6020 3088 3089 3090 3091 3092 3093 3094 3095

6030 3096 3097 3098 3099 3100 3101 3102 3103
6040 3104 3105 3106 3107 3108 3109 3110 3111

6050 3112 3113 3114 3115 3116 3117 3118 3119
6060 3120 3121 3122 3123 3124 3125 3126 3127

6070 3128 3129 3130 3131 3132 3133 3134 3135

6100 3136 3137 3138 3139 3140 3141 3142 3143
6110 3144 3145 3146 3147 3148 3149 3150 3151

6120 3152 3153 3154 3155 3156 3157 3158 3159
6130 3160 3161 3162 3163 3164 3165 3166 3167
6140 3168 3169 3170 3171 3172 3173 3174 3175
6150 3176 3177 3178 3179 3180 3181 3182 3183
6160 3184 3185 3186 3187 3188 3189 3190 3191

6170 3192 3193 3194 3195 3196 3197 3198 3199

6200 3200 3201 3202 3203 3204 3205 3206 3207
6210 3208 3209 3210 3211 3212 3213 3214 3215
6220 3216 3217 3218 3219 3220 3221 3222 3223
6230 3224 3225 3226 3227 3228 3229 3230 3231

6240 3232 3233 3234 3235 3236 3237 3238 3239
6250 3240 3241 3242 3243 3244 3245 3246 3247
6260 3248 3249 3250 3251 3252 3253 3254 3255
6270 3256 3257 3258 3259 3260 3261 3262L 3263

6300 3264 3265 3266 3267 3268 3269 3270 3271

6310 3272 3273 3274 3275 3276 3277 3278 3279

6320 3280 3281 3282 3283 3284 3285 3286 3287

6330 3288 3289 3290 3291 3292 3293 3294 3295

6340 3296 3297 3298 3299 3300 3301 3302 3303

6350 3304 3305 3306 3307 3308 3309 3310 3311

6360 3312 3313 3314 3315 3316 3317 3318 3319

6370 3320 3321 3322 3323 3324 3325 3326 3327

1 2 3 4 5 6 7

6400 3328 3329 3330 3331 3332 3333 3334 3335

6410 3336 3337 3338 3339 3340 3341 3342 3343

6420 3344 3345 3346 3347 3348 3349 3350 3351

6430 3352 3353 3354 3355 3356 3357 3358 3359

6440 3360 3361 3362 3363 3364 3365 3366 3367

6450 3368 3369 3370 3371 3372 3373 3374 3375

6460 3376 3377 3378 3379 3380 3381 3382 3383

6470 3384 3385 3386 3387 3388 3389 3390 3391

6500 3392 3393 3394 3395 3396 3397 3398 3399
6510 3400 3401 3402 3403 3404 3405 3406 3407

6520 3408 3409 3410 3411 3412 3413 3414 3415

6530 3416 3417 3418 3419 3420 3421 3422 3423

6540 3424 3425 3426 3427 3428 3429 3430 3431

6550 3432 3433 3434 3435 3436 3437 3438 3439
6560 3440 3441 3442 3443 3444 3445 3446 3447

6570 3448 3449 3450 3451 3452 3453 3454 3455

6600 3456 3457 3458 3459 3460 3461 3462 3463

6610 3464 3465 3466 3467 3468 3469 3470 3471

6620 3472 3473 3474 3475 3476 3477 3478 3479

6630 3480 3481 3482 3483 3484 3485 3486 3487

6640 3488 3489 3490 3491 3492 3493 3494 3495

6650 3496 3497 3498 3499 3500 3501 3502 3503

6660 3504 3505 3506 3507 3508 3509 3510 3511

6670 3512 3513 3514 3515 3516 3517 3518 3519

6700 3520 3521 3522 3523 3524 3525 3526 3527

6710 3528 3529 3530 3531 3532 3533 3534 3535

6720 3536 3537 3538 3539 3540 3541 3542 3543

6730 3544 3545 3546 3547 3548 3549 3550 3551

6740 3552 3553 3554 3555 3556 3557 3558 3559

6750 3560 3561 3562 3563 3564 3565 3566 3567

6760 3568 3569 3570 3571 3572 3573 3574 3575

6770 3576 3577 3578 3579 3580 3581 3582 3583

6000
to

6777
(Octal)

Octal

10000
20000
30000
40000
50000
60000
70000

3072
to

3583
(Decimal)

Decimal

4096
• 8192
12288

•16384
20480
24576

• 28672

1 2 3 4 5 6 7

7000 3584 3585 3586 3587 3588 3589 3590 3591

7010 3592 3593 3594 3595 3596 3597 3598 3599

7020 3600 3601 3602 3603 3604 3605 3606 3607

7030 3608 3609 3610 3611 3612 3613 3614 3615

7040 3616 3617 3618 3619 3620 3621 3622 3623

7050 3624 3625 3626 3627 3628 3629 3630 3631

7060 3632 3633 3634 3635 3636 3637 3638 3639

7070 3640 3641 3642 3643 3644 3645 3646 3647

7100 3648 3649 3650 3651 3652 3653 3654 3655

7110 3656 3657 3658 3659 3660 3661 3662 3663

7120 3664 3665 3666 3667 3668 3669 3670 3671

7130 3672 3673 3674 3675 3676 3677 3678 3679

7140 3680 3681 3682 3683 3684 3685 3686 3687

7150 3688 3689 3690 3691 3692 3693 3694 3695

7160 3696 3697 3698 3699 3700 3701 3702 3703

7170 3704 3705 3706 3707 3708 3709 3710 3711

7200 3712 3713 3714 3715 3716 3717 3718 3719

7210 3720 3721 3722 3723 3724 3725 3726 3727

7220 3728 3729 3730 3731 3732 3733 3734 3735

7230 3736 3737 3738 3739 3740 3741 3742 3743

7240 3744 3745 3746 3747 3748 3749 3750 3751

7250 3752 3753 3754 3755 3756 3757 3758 3759

7260 3760 3761 3762 3763 3764 3765 3766 3767

7270 3768 3769 3770 3771 3772 3773 3774 3775

7300 3776 3777 3778 3779 3780 3781 3782 3783

7310 3784 3785 3786 3787 3788 3789 3790 3791

7320 3792 3793 3794 3795 3796 3797 3798 3799

7330 3800 3801 3802 3803 3804 3805 3806 3807

7340 3808 3809 3810 3811 3812 3813 3814 3815

7350 3816 3817 3818 3819 3820 3821 3822 3823

7360 3824 3825 3826 3827 3828 3829 3830 3831

7370 3832 3833 3834 3835 3836 3837 3838 3839

1 2 3 4 5 6 7

7400 3840 3841 3842 3843 3844 3845 3846 3847

7410 3848 3849 3850 3851 3852 3853 3854 3855

7420 3856 3857 3858 3859 3860 3861 3862 3863

7430 3864 3865 3866 3867 3868 3869 3870 3871

7440 3872 3873 3874 3875 3876 3877 3878 3879

7450 3880 3881 3882 3883 3884 3885 3886 3887

7460 3888 3889 3890 3891 3892 3893 3894 3895

7470 3896 3897 3898 3899 3900 3901 3902 3903

7500 3904 3905 3906 3907 3908 3909 3910 3911

7510 3912 3913 3914 3915 3916 3917 3918 3919

7520 3920 3921 3922 3923 3924 3925 3926 3927

7530 3928 3929 3930 3931 3932 3933 3934 3935

7540 3936 3937 3938 3939 3940 3941 3942 3943

7550 3944 3945 3946 3947 3948 3949 3950 3951

7560 3952 3953 3954 3955 3956 3957 3958 3959

7570 3960 3961 3962 3963 3964 3965 3966 3967

7600 3968 3969 3970 3971 3972 3973 3974 3975

7610 3976 3977 3978 3979 3980 398r 3982 3983

7620 3984 3985 3986 3987 3988 3989 3990 3991

7630 3992 3993 3994 3995 3996 3997 3998 3999

7640 4000 4001 4002 4003 4004 4005 4006 4007

7650 4008 4009 4010 4011 4012 4013 4014 4015

7660 4016 4017 4018 4019 4020 4021 4022 4023

7670 4024 4025 4026 4027 4028 4029 4030 4031

7700 4032 4033 4034 4035 4036 4037 4038 4039
7710 4040 4041 4042 4043 4044 4045 4046 4047
7720 4048 4049 4050 4051 4052 4053 4054 4055
7730 4056 4057 4058 4059 4060 4061 4062 4063
7740 4064 4065 4066 4067 4068 4069 4070 4071

7750 4072 4073 4074 4075 4076 4077 4078 4079
7760 4080 4081 4082 4083 4084 4085 4086 4087

7770 4088 4089 4090 4091 4092 4093 4094 4095

7000 3584
to to

7777 4095
(Octal) (Decimol)

Appendix 139

Appendix C. Octal-Decimal Fraction Conversion Table

OCTAL DEC. 0(:tal DEC. OCTAL DEC. OCTAL DEC.

.000 .000000 100 125000 .200 .250000 .300 .375000

.001 .001953 101 126953 .201 .251953 .301 .376953

.002 .003906 102 128906 .202 .253906 .302 .378906

.003 .005859 103 130859 .203 .255859 .303 .380859

.004 .007812 104 132812 .204 .257812 .304 .382812

.005 .009765 105 134765 .205 .259765 .305 .384765

.006 .011718 106 136718 .206 .261718 .306 .386718

.007 .013671 107 138671 .207 .263671 .307 .388671

.010 .015625 110 140625 .210 .265625 .310 .390625

.011 .017578 111 142578 .211 .267578 .311 .392578

.012 .019531 112 144531 .212 .269531 .312 .394531

.013 .021484 113 146484 .213 .271484 .313 .396484

.014 .023437 114 148437 .214 .273437 .314 .398437

.015 .025390 115 150390 .215 .275390 .315 .400390

.016 .027343 116 152343 .216 .277343 .316 .402343

.017 . 029296 117 154296 .217 .279296 .317 .404296

.020 .031250 120 156250 .220 .281250 .320 .406250

.021 . 033203 121 158203 .221 .283203 .321 .408203

.022 .035156 122 160156 .222 .285156 .322 .410156

.023 .037109 123 162109 .223 .287109 .323 .412109

.024 .039062 124 164062 .224 .289062 .324 .414062

.025 .041015 125 166015 .225 .291015 .325 .416015

.026 .042968 126 167968 .226 .292968 .326 .417968

.027 .044921 127 169921 .227 .294921 .327 .419921

.030 . 046875 130 171875 .230 .296875 .330 .421875

.031 .048828 131 173828 .231 .298828 .331 .423828

.032 .050781 132 175781 .232 .300781 .332 .425781

.033 . 052734 133 177734 .233 .302734 .333 .427734

.034 .054687 134 179687 .234 .304687 .334 .429687

.035 .056640 135 181640 .235 .306640 .335 .431640

.036 . 058593 136 183593 .236 .308593 .336 .433593

.037 . 060546 137 185546 .237 .310546 .337 .435546

.040 .062500 140 187500 .240 .312500 .340 .437500

.041 . 064453 141 189453 .241 .314453 .341 .439453

.042 .066406 142 191406 .242 .316406 .342 .441406

.043 .068359 143 193359 .243 .318359 .343 .443359

.044 .070312 144 195312 .244 .320312 .344 .445312

.045 .072265 145 197265 .245 .322265 .345 .447265

.046 .074218 146 199218 .246 .324218 .346 .449218

.047 .076171 147 201171 .247 .326171 .347 .451171

.050 .078125 150 203125 .250 .328125 .350 .453125

.051 .080078 151 205078 .251 .330078 .351 .455078

.052 .082031 152 207031 .252 .332031 .352 .457031

.053 .083984 153 208984 .253 .333984 .353 .458984

.054 .085937 154 210937 .254 .335937 .354 .460937

.055 .087890 155 212890 .255 .337890 .355 .462890

.056 . 089843 156 214843 .256 .339843 .356 .464843

.057 .091796 157 216796 .257 .341796 .357 .466796

.060 .093750 160 218750 .260 .343750 .360 .468750

.061 .095703 161 220703 .261 .345703 .361 .470703

.062 .097656 162 222656 .262 .347656 .362 .472656

.063 . 099609 163 224609 .263 .349609 .363 .474609

.064 .101562 164 226562 .264 .351562 .364 .476562

.065 . 103515 165 228515 .265 .353515 .365 .478515

.066 . 105468 166 230468 .266 .355468 .366 .480468

.067 . 107421 167 232421 .267 .357421 .367 .482421

.070 . 109375 170 234375 .270 .359375 .370 .484375

.071 .111328 171 236328 .271 .361328 .371 .486328

.072 . 113281 172 238281 .272 .363281 .372 .488281

.073 .115234 173 240234 .273 .365234 .373 .490234

.074 .117187 174 242187 .274 .367187 .374 .492187

.075 .119140 175 244140 .275 .369140 .375 .494140

.076 . 121093 176 246093 .276 .371093 .376 .496093

.077 . 123046 177 248046 .277 .373046 .377 .498046

140 ibm 7090

Octal-Decimal Fraction Conversion Table

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.

.000000 .000000 .000100 .000244 . 000200 .000488 .000300 .000732

.000001 .000003 .000101 . 000247 .000201 .000492 .000301 .000736

.000002 .000007 .000102 .000251 .000202 .000495 .000302 . 000740

.000003 .000011 .000103 . 000255 . 000203 . 000499 .000303 .000743

.000004 .000015 .000104 .000259 . 000204 .000503 . 000304 .000747

.000005 .000019 .000105 . 000263 .000205 .000507 .000305 .000751

.000006 . 000Q22 .000106 .000267 . 000206 .000511 .000306 .000755

.000007 . 000026 .000107 .000270 . 000207 .000514 .000307 .000759

.000010 . 000030 .000110 . 000274 .000210 .000518 .000310 .000762

.000011 . 000034 .000111 .000278 .000211 . 000522 .000311 .000766

.000012 . 000038 .000112 . 000282 .000212 .000526 .000312 .000770

.000013 . 00004X .000113 . 000286 . 000213 .000530 .000313 .000774

.000014 . 000045 .000114 . 000289 . 000214 . 000534 .000314 .000778

.000015 . 000049 .000115 . 000293 .000215 . 000537 .000315 .000782

.000016 . 000053 .000116 .000297 .000216 . 000541 .000316 .000785

.000017 . 000057 .000117 .000301 .000217 . 000545 .000317 .000789

. 000020 .000061 .000120 . 000305 .000220 . 000549 .000320 .000793

.000021 . 000064 .000121 . 000308 .000221 . 000553 .000321 .000797

. 000022 . 000068 .000122 .000312 .000222 .000556 .000322 .000801

. 000023 .000072 .000123 . 000316 . 000223 . 000560 . 000323 .000805

. 000024 .000076 .000124 . 000320 . 000224 . 000564 .000324 .000808

.000025 . 000080 .000125 . 000324 .000225 .000568 .000325 .000812

. 000026 .000083 .000126 . 000328 . 000226 .000572 .000326 .000816

.000027 .000087 .000127 .000331 .000227 .000576 .000327 .000820

.000030 .000091 .000130 . 000335 .000230 . 000579 .000330 .000823

.000031 .000095 .000131 .000339 . 000231 . 000583 .000331 .000827

.000032 .000099 .000132 . 000343 . 000232 .000587 .000332 .000831

. 000033 .000102 .000133 . 000347 . 000233 .000591 .000333 .000835

. 000034 .000106 .000134 . 000350 .000234 .000595 .000334 .000839

.000035 .000110 .000135 . 000354 .000235 .000598 .000335 .000843

.000036 .000114 .000136 .000358 . 000236 .000602 .000336 .000846

.000037 .000118 .000137 . 000362 .000237 .000606 .000337 .000850

.000040 .000122 .000140 .000366 . 000240 .000610 . 000340 .000854

.000041 .000125 .000141 . 000370 . 000241 .000614 .000341 .000858

. 000042 .000129 .000142 .000373 . 000242 .000617 . 000342 .000862

. 000043 .000133 .000143 . 000377 . 000243 .00062L . 000343 .000865

. 000044 .000137 .000144 .000381 . 000244 .000625 .000344 .000869

. 000045 .000141 .000145 . 000385 . 000245 . 000629 .000345 .000873

.000046 .000144 .000146 . 000389 .000246 . 000633 . 000346 .000877

. 000047 .000148 . 000147 . 000392 . 000247 .000637 . 000347 .000881

.000050 .000152 .000150 .000396 . 000250 . 000640 .000350 .000885

.000051 .000156 .000151 . 000400 .000251 . 000644 .000351 .000888

. 000052 . 000160 .000152 . 000404 . 000252 . 000648 .000352 .000892

.000053 . 000164 .000153 . 000408 . 000253 .000652 .000353 .000896

.000054 .000167 .000154 .000411 . 000254 .000656 .000354 .000900

.000055 .000171 .000155 . 000415 .000255 .000659 .000355 .000904

.000056 .000175 .000156 .000419 .000256 . 000663 .000356 .000907

.000057 .000179 .000157 . 000423 . 000257 .000667 .000357 .000911

.000060 .000183 .000160 . 000427 . 000260 .000671 .000360 .000915

.000061 . 000186 .000161 .000431 .000261 .000675 .000361 .000919

.000062 .000190 .000162 . 000434 . 000262 .000679 .000362 .000923

.000063 . 000194 .000163 .000438 .000263 .000682 . 000363 .000926

.000064 .000198 .000164 . 000442 . 000264 .000686 . 000364 .000930

.000065 .000202 .000165 . 000446 . 000265 .000690 .000365 .000934

. 000066 . 000205 .000166 .000450 . 000266 .000694 .000366 .000938

.000067 .000209 .000167 . 000453 .000267 .000698 .000367 . 000942

.000070 . 000213 .000170 . 000457 .000270 .000701 .000370 .000946

.000071 .000217 .000171 .000461 .000271 . 000705 .000371 .000949

. 000072 .000221 .000172 . 000465 .000272 .000709 .000372 .000953

.000073 . 000225 .000173 . 000469 .000273 .000713 .000373 .000957

. 000074 . 000228 .000174 . 000473 .000274 .000717 .000374 .000961

. 000075 .000232 .000175 . 000476 . 000275 .000720 .000375 .000965

. 000076 .000236 .000176 . 000480 .000276 .000724 .000376 .000968

.000077 . 000240 .000177 . 000484 .000277 .000728 .000377 .000972

Appendix 141

Octal-Decimal Fraction Conversion Table

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.

.000400 .000976 .000500 .001220 .000600 .001464 . 000700 .001708

.000401 .000980 .000501 .001224 .000601 .001468 .000701 .001712

, 000402 .000984 .000502 .001228 .000602 .001472 . 000702 .001716
'. 000403 .000988 .000503 .001232 . 000603 .001476 .000703 .001720

. 000404 .000991 .000504 .001235 . 000604 .001480 .000704 .001724

. 000405 .000995 .000505 .001239 .000605 .001483 .000705 .001728

. 000406 .000999 .000506 . 001243 .000606 .001487 .000706 .001731

.000407 .001003 .000507 .001247 .000607 .001491 .000707 .001735

.000410 .001007 .000510 .001251 .000610 . 001495 .000710 .001739

.000411 .001010 .000511 .001255 .000611 .001499 .000711 .001743

.000412 .001014 .000512 .001258 .000612 .001502 .000712 .001747

. 000413 .001018 .000513 .001262 .000613 . 001506 .000713 .001750

. 000414 .001022 .000514 . 001266 . 000614 .001510 .000714 .001754

. 000415 . 001026 .000515 .001270 .000615 .001514 .000715 .001758

.000416 . 001029 . 000516 .001274 .000616 .001518 .000716 .001762

.000417 . 001033 .000517 .001277 .000617 . 001522 .000717 .001766

. 000420 .001037 .000520 .001281 . 000620 .001525 .000720 .001770

. 000421 .001041 .000521 .001285 .000621 .001529 .000721 .001773

. 000422 . 001045 .000522 .001289 .000622 .001533 .000722 .001777

. 000423 . 001049 .000523 .001293 . 000623 . 001537 .000723 .001781

. 000424 . 001052 . 000524 .001296 . 000624 .001541 .000724 .001785

. 000425 .001056 .000525 .001300 .000625 .001544 .000725 .001789

. 000426 .001060 .000526 .001304 .000626 .001548 .000726 .001792

.000427 .001064 .000527 .001308 .000627 .001552 .000727 .001796

. 000430 .001068 .000530 .001312 .000630 .001556 .000730 .001800

.000431 .001071 .000531 .001316 .000631 .001560 .000731 .001804

. 000432 . 001075 .000532 .001319 .000632 .001564 .000732 .001808

. 000433 .001079 .000533 .001323 .000633 .001567 .000733 .001811

. 000434 .001083 .000534 .001327 .000634 .001571 .000734 .001815

. 000435 .001087 .000535 .001331 .000635 .001575 .000735 .001819

. 000436 .001091 .000536 .001335 .000636 .001579 .000736 .001823

.000437 .001094 .000537 .001338 .000637 .001583 .000737 .001827

. 000440 .001098 .000540 .001342 .000640 .001586 , 000740 .001831

. 000441 .001102 .000541 . 001346 . 000641 .001590 .000741 .001834

. 000442 .001106 . 000542 .001350 . 000642 .001594 . 000742 .001838

. 000443 .001110 . 000543 .001354 . 000643 .001598 . 000743 .001842

. 000444 .001113 .000544 .001358 . 000644 .001602 .000744 .001846

. 000445 .001117 .000545 .001361 .000645 .001605 .000745 .001850

. 000446 .001121 .000546 .001365 . 000646 .001609 .000746 .001853

. 000447 .001125 . 000547 .001369 .000647 .001613 .000747 .001857

. 000450 . 001129 .000550 .001373 .000650 .001617 .000750 .001861

. 000451 .001132 .000551 .001377 .000651 .001621 .000751 .001865

. 000452 .001136 .000552 .001380 .000652 .001625 .000752 .001869

. 000453 . 001140 .000553 .001384 . 000653 .001628 .000753 .001873

.000454 .001144 . 000554 .001388 .000654 .001632 .000754 .001876

. 000455 . 001148 .000555 .001392 .000655 .001636 .000755 .001880

.000456 .001152 . 000556 .001396 . 000656 .001640 .000756 .001884

. 000457 .001155 .000557 .001399 .000657 .001644 .000757 .001888

. 000460 .001159 .000560 . 001403 .000660 .001647 .000760 .001892

.000461 .001163 .000561 .001407 .000661 .001651 .000761 .001895

.000462 .001167 .000562 .001411 .000662 .001655 .000762 .001899

. 000463 .001171 . 000563 .001415 .000663 .001659 .000763 .001903

. 000464 .001174 .000564 .001419 . 000664 .001663 .000764 .001907

.000465 . 001178 .000565 .001422 .000665 .001667 .000765 .001911

. 000466 .001182 .000566 .001426 .000666 .001670 .000766 .001914

. 000467 .001186 .000567 . 001430 .000667 .001674 .000767 . 001918

.000470 .001190 .000570 .001434 .000670 .001678 .000770 .001922

. 000471 .001194 .000571 . 001438 .000671 .001682 .000771 .001926

.000472 .001197 .000572 .001441 .000672 .001686 .000772 . 001930

. 000473 .001201 . 000573 . 001445 .000673 .001689 ,000773 1 001934

. 000474 .001205 . 000574 .001449 .000674 .001693 .000774 .001937

.000475 .001209 . 000575 .001453 .000675 .001697 .000775 .001941

.000476 .001213 .000576 .001457 .000676 .001701 .000776 .001945

. 000477 .001216 .000577 .001461 .000677 .001705 .000777 .001949

142 ibm 7090

Appendix D

Table of Powers of Two

1 1.0
2 1 0.5

4 2 0.25

8 3 0.125

16 4 0.062 5

32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5

256 8 0.003 906 25

512 9 0.001 953 125
1 024 10 0.000 976 562 5

2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5

131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5

8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5

536 870 912 29 0.000 000 001 862 645 149 230 957 031 25
1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

Appendix 143

Appendix E. SCAT Mnemonic Operation Codes

CODE

ACL
ADD
ADM
ALS
ANA
ANS
ARS
AXC
AXT
BSFA
BSFB
BSFC
BSFD
BSFE
BSFF
BSFG*
BSFH*
BSR
BSRA
BSRB
BSRC
BSRD
BSRE
BSRF
BSRG*
BSRH*
BTTA
BTTB
BTTC
BTTD
BTTE
BTTF
BTTG*
BTTH*
CAD**
CAL
CAQ
CAS
CFF
CHS
CLA
CLM
CLS
COM
CPY**
CRQ
CVR
DCT
DVH
DVP
ECTM
EFTM
ENB
ENK
ERA
ESNT

ESTM
ETM
ETTA
ETTB
ETTC
ETTD
ETTE
ETTF
ETTG*
ETTH*
FAD
FAM

COMMENT Z

Add and Carry Logical Word X
Add X
Add Magnitude X
Accumulator Left Shift X
AND to Accumulator X
AND to Storage X
Accumulator Right Shift X
Address to Index, Complemented
Address to Index, True
Backspace File, Ch. A X

X
X
X
X
X
X
X

Backspace File, Ch. B
Backspace File, Ch. C
Backspace File, Ch. D
Backspace File, Ch. E
Backspace File, Ch. F
Backspace File, Ch. G
Backspace File, Ch. H
Backspace Record X
Backspace Record, Ch. A X
Backspace Record, Ch. B X
Backspace Record, Ch. C X
Backspace Record, Ch. D X
Backspace Record, Ch. E X
Backspace Record, Ch. F X
Backspace Record, Ch. G X
Backspace Record, Ch. H X
Beginning of Tape Test, Ch. A X
Beginning of Tape Test, Ch. B X
Beginning of Tape Test, Ch. C X
Beginning of Tape Test, Ch. D X
Beginning of Tape Test, Ch. E X
Beginning of Tape Test, Ch. F X
Beginning of Tape Test, Ch. G X
Beginning of Tape Test, Ch. H X
Copy and Add Logical Word X
Clear and Add Logical Word X
Convert by Addition from MQ
Compare Accumulator with Storage X
Change Film Frame X
Change Sign X
Clear and Add X
Clear Magnitude X
Clear and Subtract X
Complement Magnitude X
Copy X
Convert by Replacement from MQ
Convert by Replacement from AC
Divide Check Test X
Divide or Halt X
Divide or Proceed X
Enter Copy Trap Mode X
Enter Floating Trap Mode X
Enable from Y X
Enter Keys X
Exclusive OR to Accumulator X
Enter Storage Nullification,

and Transfer X
Enter Select Trap Mode X
Enter Trapping Mode X
End of Tape Test, Ch. A X
End of Tape Test, Ch. B X
End of Tape Test, Ch. C X
End of Tape Test, Ch. D X
End of Tape Test, Ch. E X
End of Tape Test, Ch. F X
End of Tape Test, Ch. G X
End of Tape Test, Ch. H X
Floating Add X
Floating Add Magnitude X

X
X
X

X
X

X
X

21

20
20
31

48
48
32
46
45
58
58
58
58
58
58
58
58

58
58
58
58
58
58
58
58
58
41

41

41

41

41

41

41

41

20
57
43
40
49

20
49
20
49

56
56
42
24
24
66
66
65

35

49

65

66
36
41

41

41

41

41

41

41

£ 26
< 27

(D The mnemonic code is an extended code; no particular ma-
chine code is concerned with it.

* 7090 Instruction only.

** 709 Instruction only, not included in this manual.

CODE

FDH
FDP
FMP
FOR
FRN
FSB
FSM
FVE
HPR
HTR
IIA
IIL
IIR
IIS

IOCD

IOCDN
IOCP

IOCPN
IOCT

IOCTN
IORP

IORPN
IORT

IORTN
IOSP

IOSPN
IOST

IOSTN
IOT
LAC

LAS

LBT
LCHA
LCHB
LCHC
LCHD
LCHE
LCHF
LCHG*
LCHH*
LDA**
LDC

LDI
LDQ
LFT
LFTM
LGL
LGR
LLS
LNT
LRS
LSNM
LTM
LXA
LXD
MON
MPR
MPY
MSE
MTH
MTW
MZE
NOP
NZT

Floating Divide or Halt X
Floating Divide or Proceed X
Floating Multiply X
Four
Floating Round •'. X
Floating Subtract X
Floating Subtract Magnitude X
Five

Halt and Proceed
Halt and Transfer X
Invert Indicators from Accumulator
Invert Indicators of the Left Half
Invert Indicators of the Right Half
Invert Indicators from Storage X
Input-Output under Count Control
and Disconnect

(IOCD with No Transmission)
Input-Output under Count Control
and Proceed

(IOCP with No Transmission)
Input-Output under Count Control
and Transfer

(IOCT with No Transmission)
Input-Output of a Record
and Proceed

(IORP with No Transmission)
Input-Output of a Record
and Transfer

(IORT with No Transmission)
Input-Output until Signal

then Proceed
(IOSP with No Transmission)
Input-Output until Signal

then Transfer
(IOST with No Transmission)
Input-Output Check Test X
Load Complement of Address

in Index
Logical Compare Accumulator
with Storage x

Low-Order Bit Test X
Load Channel A X
Load Channel B x
Load Channel C X
Load Channel D X
Load Channel E X
Load Channel F X
Load Channel G X
Load Channel H X
Locate Drum Address X
Load Complement of Decrement

in XR
Load Indicators x
Load the MQ x
Left Half Indicators, Off Test
Leave Floating Trap Mode X
Logical Left Shift X
Logical Right Shift X
Long Left Shift x
Left Half Indicators, On Test
Long Right Shift x
Leave Storage Nullification Mode X
Leave Trapping Mode X
Load Index from Address
Load Index from Decrement
Minus One
Multiply and Round X
Multiply x
Minus Sense x
Minus Three
Minus Two
Minus Zero
No Operation
Storage Not-Zero Test X

X 30

X 30
X 29

(i)

28
X 27
X 28

(i)

35

X 36
53

53
53

X 53

62
62

62

62

63

63

62

62

63

63

63

63

64

64

42

45

X 43

42
X 61

X 61

X 61

X 61

X 61

X 61

X 61

X 61

X

45

X 51

X 33

55

66

32
32
32
54

32
65

37

45
45
(i)

X 22
X 22

41
(i)

(i)

(i)

35
X 43

144 ibm 7090

SCAT Mnemonic Operation Codes (Cont'd)

£ 1 w
Q Q «

CODE COMMENT 5 2 £

OAI OR Accumulator to Indicators 51

OFT Off Test for Indicators X X 54
ONT On Test for Indicators X X 54

ORA OR to Accumulator X X 48

ORS OR to Storage X X 48

OSI OR Storage to Indicators X X 51

PAC Place Complement of Address
in XR 46

PAI Place Accumulator in Indicators 50

PAX Place Address in Index 46

PBT P-Bit Test X 42

PDC Place Complement of Decrement
in XR 46

PDX Place Decrement in Index 46
PIA Place Indicators in Accumulator 51

PON Plus One <D

PSE Plus Sense X 40
PTH Plus Three <D

PTW Plus Two (i)

PXA Place Index in Address 47

PXD Place Index in Decrement 47
PZE Plus Zero <D

RCDA Read Card Reader, Ch. A X 58
RCDB* Read Card Reader, Ch. B X 58
RCDC Read Card Reader, Ch. C X 58

RCDD* Read Card Reader, Ch. D X 58

RCDE Read Card Reader, Ch. E X 58
RCDF* Read Card Reader, Ch. F X 58
RCDG* Read Card Reader, Ch. G X 58
RCDH* Read Card Reader, Ch. H X 58
RCHA Reset and Load, Ch. A X X 60
RCHB Reset and Load, Ch. B X X 60
RCHC Reset and Load, Ch. C X X 60
RCHD Reset and Load, Ch. D X X 60
RCHE Reset and Load, Ch. E X X 60
RCHF Reset and Load, Ch. F X X 60
RCHG* Reset and Load, Ch. G X X 60
RCHH* Reset and Load, Ch. H X X 60
RCT Restore Channel Traps X 64
RDCA Reset Data Channel A X 59
RDCB Reset Data Channel B X 59
RDCC Reset Data Channel C X 59
RDCD Reset Data Channel D X 59
RDCE Reset Data Channel E X 59
RDCF Reset Data Channel F X 59
RDCG Reset Data Channel G X 59
RDCH Reset Data Channel H X 59
RDR»* Read Drum X
RDS Read Select X 58
REWA Rewind, Ch. A X 59
REWB Rewind, Ch. B X 59
REWC Rewind, Ch. C X 59
REWD Rewind, Ch. D X 59
REWE Rewind, Ch. E X 59
REWF Rewind, Ch. F X 59
REWG* Rewind, Ch. G X 59
REWH* Rewind, Ch. H X 59
RFT Right Half Indicators, Off Test 55
RIA Reset Indicators from

Accumulator 52
RIL Reset Indicators of Left Half 52
RIR Reset Indicators of Right Half 52
RIS Reset Indicators from Storage X X 52
RND Round X 22
RNT Right Half Indicators, On Test 54
RPRA Read Printer, Ch. A X 58
RPRB* Read Printer, Ch. B X 58
RPRC Read Printer, Ch. C X 58
RPRD* Read Printer, Ch. D X 58

(i) The mnemonic code is an extended code; no particular ma-
chine code is concerned with it.

* 7090 Instruction only.

709 Instruction only, not included in this manual.

CODE COMMENT 2

RPRE Read Printer, Ch. E X
RPRF* Read Printer, Ch. F X
RPRG* Read Printer, Ch. G X
RPRH* Read Printer, Ch. H X
RQL Rotate MQ Left X
RTBA Read Tape Binary, Ch. A X
RTBB Read Tape Binary, Ch. B X
RTBC Read Tape Binary, Ch. C X
RTBD Read Tape Binary, Ch. D X
RTBE Read Tape Binary, Ch. E X
RTBF Read Tape Binary, Ch. F X
RTBG* Read Tape Binary, Ch. G i X
RTBH* Read Tape Binary, Ch. H X
RTDA Read Tape Decimal, Ch. A X
RTDB Read Tape Decimal, Ch. B X
RTDC Read Tape Decimal, Ch. C X
RTDD Read Tape Decimal, Ch. D X
RTDE Read Tape Decimal, Ch. E X
RTDF Read Tape Decimal, Ch. F X
RTDG* Read Tape Decimal, Ch. G X
RTDH* Read Tape Decimal, Ch. H X
RUNA Rewind and Unload Channel A X
RUNB Rewind and Unload Channel B X
RUNC Rewind and Unload Channel C X
RUND Rewind and Unload Channel D X
RUNE Rewind and Unload Channel E X
RUNF Rewind and Unload Channel F X
RUNG* Rewind and Unload Channel G X
RUNH* Rewind and Unload Channel H X
SBM Subtract Magnitude X
SCHA Store, Ch. A X
SCHB Store, Ch. B X
SCHC Store, Ch. C X
SCHD Store, Ch. D X
SCHE Store, Ch. E X
SCHF Store, Ch. F X
SCHG* Store, Ch. G X
SCHH* Store, Ch. H X
SDLA Set Density Low, Channel A
SDLB Set Density Low, Channel B
SDLC Set Density Low, Channel C
SDLD Set Density Low, Channel D
SDLE Set Density Low, Channel E
SDLF Set Density Low, Channel F
SDLG* Set Density Low, Channel G
SDLH* Set Density Low, Channel H
SDHA Set Density High, Channel A
SDHB Set Density High, Channel B
SDHC Set Density High, Channel C
SDHD Set Density High, Channel D
SDHE Set Density High, Channel E
SDHF Set Density High, Channel F
SDHG* Set Density High, Channel G
SDHH* Set Density High, Channel H
SIL Set Indicators of Left Half
SIR Set Indicators of Right Half
SIX Six

SLF Sense Lights Off X
SLN Sense Lights On X
SLQ Store Left Half MQ X
SLT Sense Light Test X
SLW Store Logical'Word X
SPRA Sense Printer, Ch. A X
SPRB* Sense Printer, Ch. B X
SPRC Sense Printer, Ch. C X
SPRD* Sense Printer, Ch. D X
SPRE Sense Printer, Ch. E X
SPRF* Sense Printer, Ch. F X
SPRG* Sense Printer, Ch. G X
SPRH* Sense Printer, Ch. H X
SPTA Sense Printer Test, Ch. A X
SPTB* Sense Printer Test, Ch. B X
SPTC Sense Printer Test, Ch. C X
SPTD* Sense Printer Test, Ch. D X
SPTE Sense Printer Test, Ch. E X

X
X
X
X
X
X
X
X
X

58
58
58
58

32
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
59
59
59
59
59
59
59
59
21

60
60
60
60
60
60
60
60
59
59
59

59
59
59
59
59
59
59
59
59
59
59
59
59
51

52
(i)

40
40
33

40
33

40
40
40
40
40
40
40
40
40
40
40
40
40

Appendix 145

SCAT Mnemonic Operation Codes (Cont'd)
C/J

w %J (C
« Q

o fi 2
CODE COMMENT 5 5 2

SPTF# Sense Printer Test, Ch. F X 40
SPTG# Sense Printer Test, Ch. G X 40
SPTH* Sense Printer Test, Ch. H X 40
SPUA Sense Punch, Ch. A X 40
SPUB* Sense Punch, Ch. B X 40
SPUC Sense Punch, Ch. C X 40
SPUD* Sense Punch, Ch. D X 40
SPUE Sense Punch, Ch. E X 40
SPUF* Sense Punch, Ch. F X 40
SPUG* Sense Punch, Ch. G X 40
SPUH* Sense Punch, Ch. H X 40
SSM Set Sign Minus X 50
SSP Set Sign Plus X 50
STA Store Address X X 34
STD Store Decrement X X 34
STI Store Indicators X X 51

STL Store Instruction Location Counter X X 34
STO Store X X 33
STP Store Prefix X X 33
STQ Store MQ X X 33
STR Store Location and Trap 34
STT Store Tag X X 34
STZ Store Zero X X 34
SUB Subtract X X 21

SVN Seven (D
SWT Sense Switch Test X 40
SXA Store Index in Address 46
SXD Store Index in Decrement 46
TCH Transfer in Channel 44
TCNA Transfer on Ch. A Not in Operation X X 44
TCNB 'transfer on Ch. B Not in Operation X X 44
TCNC Transfer on Ch. C Not in Operation X X 44
TCND Transfer on Ch. D Not in Operation X X 44
TCNE Transfer on Ch. E Not in Operation X X 44
TCNF Transfer on Ch. F Not in Operation X X 44
TCNG# Transfer on Ch. G Not in Operation X X 44
TCNH# Transfer on Ch. H Not in Operation X X 44
TCOA Transfer on Ch. A in Operation X X 43
TCOB Transfer on Ch. B in Operation X X 43
TCOC Transfer on Ch. C in Operation X X 43
TCOD Transfer on Ch. D in Operation X X 43
TCOE Transfer on Ch. E in Operation X X 43
TCOF Transfer on Ch. F in Operation X X 43
TCOG# Transfer on Ch. G in Operation X X 43
TCOH* Transfer on Ch. H in Operation X X 43
TEFA Transfer on End of File, Ch. A X X 44
TEFB Transfer on End of File, Ch. B X X 44
TEFC Transfer on End of File, Ch. C X X 44
TEFD Transfer on End of File, Ch. D X X 44
TEFE Transfer on End of File, Ch. E X X 44
TEFF Transfer on End of File, Ch. F X X 44
TEFG# Transfer on End of File, Ch. G X X 44
TEFH* Transfer on End of File, Ch. H X X 44
TIF Transfer if Indicators Off X X 53
TIO Transfer if Indicators On X X 53
TIX Transfer on Index 40
TLQ Transfer on Low MQ X X 39
TMI Transfer on Minus X X 38
TNO Transfer on No Overflow X X 38
TNX Transfer on No Index 40
TNZ Transfer on No Zero X X 37
TOV Transfer on Overflow X X 38
TPL Transfer on Plus X X 38
TQO Transfer on Quotient Overflow X X 38
TQP Transfer on MQ Plus X X 38
TRA Transfer X X 36
TRCA Transfer on Redun. Check, Ch. A X X 44
TRCB Transfer on Redun. Check, Ch. B X X 44
TRCC Transfer on Redun. Check, Ch. C X X 44
TRCD Transfer on Redun. Check, Ch. D X X 44

(D The mnemonic code is an extended code; no particular ma-
chine code is concerned with it.

* 7090 Instruction only.
** 709 Instruction only, not included in this manual.

a
«

s
CODE COMMENT g

TRCE Transfer on Redun. Check, Ch. E X
TRCF Transfer on

7
Redun. Check, Ch. F X

TRCG* Transfer on Redun. Check, Ch. G X
TRCH* Transfer on Redun. Check, Ch. H X
TSX Transfer and Set Index
TTR Trap Transfer X
TXH Transfer on Index High
TXI Transfer with Index Incremented...
TXL Transfer on Index Low or Equal
TZE Transfer on Zero X
UAM Unnormalized Add Magnitude X
UFA Unnormalized Floating Add X
UFM Unnormalized Floating Multiply X
UFS Unnormalized Floating Subtract X
USM Unnormalized Subtract Magnitude.. X
VDH Variable Length Divide or Halt X
VDP Variable Length Divide or Proceed. ... X
VLM Variable Length Multiply X
WDR** Write Drum X
WEF Write End of File X
WEFA Write End of File, Ch. A X
WEFB Write End of File, Ch. B X
WEFC Write End of File, Ch. C X
WEFD Write End of File, Ch. D X
WEFE Write End of File, Ch. E X
WEFF Write End of File, Ch. F X
WEFG# Write End of File, Ch. G X
WEFH* Write End of File, Ch. H X
WPBA Write Printer Binary, Ch. A X
WPBB* Write Printer Binary, Ch. B X
WPBC Write Printer Binary, Ch. C X
WPBD # Write Printer Binary, Ch. D X
WPBE Write Printer Binary, Ch. E X
WPBF* Write Printer Binary, Ch. F X
WPBG# Write Printer Binary, Ch. G X
WPBH* Write Printer Binary, Ch. H X
WPDA Write Printer Decimal, Ch. A X
WPDB* Write Printer Decimal, Ch. B X
WPDC Write Printer Decimal, Ch. C X
WPDD* Write Printer Decimal, Ch. D X
WPDE Write Printer Decimal, Ch. E X
WPDF* Write Printer Decimal, Ch. F X
WPDG* Write Printer Decimal, Ch. G X
WPDH* Write Printer Decimal, Ch. H X
WPUA Write Punch, Ch. A X
WPUB* Write Punch, Ch. B X
WPUC Write Punch, Ch. C X
WPUD* Write Punch, Ch. D X
WPUE Write Punch, Ch. E X
WPUF* Write Punch, Ch. F X
WPUG» Write Punch, Ch. G X
WPUH* Write Punch, Ch. H X
WRS Write Select X
WTBA Write Tape Binary, Ch. A X
WTBB Write Tape Binary, Ch. B X
WTBC Write Tape Binary, Ch. C X
WTBD Write Tape Binary, Ch. D X
WTBE Write Tape Binary, Ch. E X
WTBF Write Tape Binary, Ch. F X
WTBG# Write Tape Binary, Ch. G X
WTBH* Write Tape Binary, Ch. H X
WTDA Write Tape Decimal, Ch. A X
WTDB Write Tape Decimal, Ch. B X
WTDC Write Tape Decimal, Ch. C X
WTDD Write Tape Decimal, Ch. D X
WTDE Write Tape Decimal, Ch. E X
WTDF Write Tape Decimal, Ch. F X
WTDG* Write Tape Decimal, Ch. G X
WTDH* Write Tape Decimal, Ch. H X
WTV*» Write Cathode Ray Tube X
XCA Exchange Accumulator and MQ
XCL Exchange Logical Accumulator

and MQ
XEC Execute X
ZET Storage Zero Test X

s
•<

Q
g

g
2

X 44
X 44
X 44
X 44

39
X 37

39
39
40

X 37
X 28
X 27
X 29
X 28
X 28

24
24
22

59
59
59
59
59
59
59
59
59
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58

58
58
58
58
58
58
58
58
58
58

34

34
X 36
X 43

146 Appendix

Appendix F. Listing of Instructions

Alphabetic Listing

OPERATION CODE
ALPHA OCTAL

ACL 0361
ADD 0400
ADM 0401
ALS 0767
ANA —0320
ANS 0320
ARS 0771
AXC —0774

AXT 0774
BSF —0764
BSR 0764
BTT 0760. .xxxx
CAL —0500
CAQ —0114

CAS 0340
CHS 0760. .0002

CLA 0500
CLM 0760. .0000
CLS 0502
COM 0760. .0006
CRQ —0154

CVR 0114

DCT 0760. .0012
DVH 0220
DVP 0221
ECTM —0760. .0006
EFTM —0760. .0002
ENB 0564
ENK 0760. .0004
ERA 0322
ESNT —0021

ESTM -J0760. .0005
ETM 0760. .0007
ETT —0760. .xxxx
FAD 0300
FAM 0304
FDH 0240
FDP 0241
FMP 0260
FRN 0760. .0011
FSB 0302
FSM 0306
HPR 0420
HTR 0000
IIA 0041
IIL —0051
IIR 0051

IIS 0440

IOT 0760. .0005
LAC 0535

LAS —0340

LBT 0760. .0001
LCHA
LCHB

0544
—0544

LCHC 0545
LCHD —0545
LCHE 0546
LCHF —0546
LCHG 0547
LCHH —0547
LDC —0535

INSTRUCTION

Add and Carry Logical Word X
Add X
Add Magnitude X
Accumulator Left Shift 7 X
AND to Accumulator X
AND to Storage X
Accumulator Right Shift 7 X
Address to Index Comple-
mented

Address to Index True
Backspace File 8 X
Backspace Record 8 X
Beginning of Tape Test X
Clear and Add Logical Word
Convert by Addition from
MQ 6

Compare AC with storage X
Change Sign X
Clear and Add X
Clear Magnitude X
Clear and Subtract X
Complement Magnitude X
Convert by Replacement from
MQ 6

Convert by Replacement from
AC 6

Divide Check Test X
Divide or Halt X
Divide or Proceed X
Enter Copy Trap Mode X
Enter Floating Trap Mode X
Enable from Y X
Enter Keys X
Exclusive OR to Accumulator X
Enter Storage Null.

and Transfer X
Enter Select Trap Mode X
Enter Trapping Mode X
End of Tape Test X
Floating Add 3 X
Floating Add Magnitude 3 X
Floating Divide or Halt 5 X
Floating Divide or Proceed ... 5 X
Floating Multiply 1 X
Floating Round X
Floating Subtract 3 X
Floating Subtract Magnitude 3 X
Halt and Proceed
Halt and Transfer X
Invert Indicators from AC
Invert Indicators of Left Half
Invert Indicators of Right
Half

Invert Indicators from Stor-

age X
Input-Output Check Test X
Load Complement of Address

in Index
Logical Compare Accumula-

tor with Storage X
Low- Order Bit Test X
Load Channel A 8 X
Load Channel B 8 X
Load Channel C 8 X
Load Channel D 8 X
Load Channel E 8 X
Load Channel F 8 X
Load Channel G 8 X
Load Channel H 8 X
Load Complement of Decre-
ment in XR

xS
Allahab

as OPERATION CODIi

z w < ALPHA OCTAL

X 21 LDI 0441
X 20 LDQ 0560
X 20 LFT —0054

31 LFTM —0760. .0004
X 48 LGL —0763
X 48 LGR —0765

32 LLS
LNT

0763
—0056

46 LRS 0765
45 LSNM —0760. 0010
58
58 LTM —0760. ,0007
41 LXA 0534

X 20 LXD
MPR

—0534
—0200

57 MPY 0200
X 43 MSE —0760

49 NOP 0761
X 20 NZT —0520

49 OAI 0043
X 20

49 OFT
ONT

0444
0446

56 ORA
ORS

—0501
—0602

56 OSI 0442
42 PAC 0737

X 24
X 24

66
PAI 0044

66 PAX 0734
X 67 PBT —0760. 0001
X 35 PDC —0737
X 49

PDX —0734
X 65

66
PIA —0046

36 PSE 0760
41 PXA 0754

X 26 PXD —0754
X 27 RCHA 0540
X 30 RCHB —0540
X 30 RCHC 0541
X 29 RCHD —0541

28 RCHE 0542
X 27 RCHF —0542
X 28 RCHG 0543

35 RCHH—0543
X 36 RCT 0760. .0014

53 RDCA 0760. .1352
53 RDCB 0760. .2352

RDCC 0760. .3352
53 RDCD 0760. .4352

RDCE 0760. .5352
X 53 RDCF 0760. .6352
X 42 RDCG 0760. .7352

RDCH 0760.10352
45 RDS

REW
0762
0772

X 43
42

RFT 0054

X 61 RIA —0042
X 61

X 61 RICA 0760. .1350
X 61 RICB 0760. .2350
X 61 RICC 0760. .3350
X 61 RICD 0760. .4350
X 61 RICE 0760. .5350
X 61 RICF 0760. .6350

RICG 0760. .7350
45 RICH 0760. 10350

INSTRUCTION

*3

53

Load Indicators X X 51
Load MQ X X 33
Left Half Indicators, Off Test 55
Leave Floating Trap Mode X 66
Logical Left Shift 7 X 32
Logical Right Shift 7 X 32
Long Left Shift 7 X 32
Left Half Indicators, On Test 54
Long Right Shift 7 X 32
Leave Storage

Nullification Mode X 65
Leave Trapping Mode X 37
Load Index from Address 45
Load Index from Decrement 45
Multiply and Round 1 X X 22
Multiply 1 X X 22
Minus Sense X 41
No Operation 35
Storage Not-Zero Test XX 43
OR Accumulator to Indica-

tors 51
Off Test for Indicators X X 54
On Test for Indicators X X 54
OR to Accumulator X X 48
OR to Storage X X 48
OR Storage to Indicators XX 51
Place Complement of Address

in XR 46
Place Accumulator in Indica-

tors 50
Place Address in XR 46
P-bit Test X 42
Place Complement of Decre-
ment in XR 46

Place Decrement in Index 46
Place Indicator in Accumula-

tor 51
Plus Sense X 40
Place Index in Address 47
Place Index in Decrement 47
Reset and Load Channel A . XX 60
Reset and Load Channel B X X 60
Reset and Load Channel C XX 60
Reset and Load Channel D XX 60
Reset and Load Channel E XX 60
Reset and Load Channel F XX 60
Reset and Load Channel G XX 60
Reset and Load Channel H XX 60
Restore Channel Traps X 65
Reset Data Channel A X 59
Reset Data Channel B X 59
Reset Data Channel C X 59
Reset Data Channel D X 59
Reset Data Channel E X 59
Reset Data Channel F X 59
Reset Data Channel G X 59
Reset Data Channel H X 59
Read Select 8 X 58
Rewind 8 X 59
Right Half Indicators, Off
Test 55

Reset Indicators from Accu-
mulator 52

Reset Channel A X 68
Reset Channel B X 68
Reset Channel C X 68
Reset Channel D X 68
Reset Channet E X 68
Reset Channel F X 68
Reset Channel G X 68
Reset Channel H X 68

Appendix 147

Alphabetic (Continued)
U eg

OPERATION CODE
ALPHA OCTAL

RIL —0057
RIR 0057

RIS 0445
RND 0760. .0010
RNT 0056

RQL —0773
RSCA -4-0540

RSCB —0540
RSCC +0541
RSCD —0541
RSCE +0542
RSCF —0542
RSCG +0543
RSCH —0543
RUN —0772
SBM —0400
SCHA 0640
SCHB —0640
SCHC 0641

SCHD —0641
SCHE 0642
SCHF —0642
SCHG 0643
SCHH —0643
SDN 0776
SIL —0055
SIR 0055
SLQ —0620
SLW 0602
SSM —0760.. 0003
SSP 0760.. 0003
STA 0621
STCA +0544
STCB —0544
STCC +0545
STCD —0545
STCE +0546
STCF —0546
STCG +0547
STCH —0547
STD 0622
STI 0604
STL —0625

STO 0601
STP 0630
STQ —0600
STR —1000
STT 0625
STZ 0600
SUB 0402
SXA 0634
SXD —0634
TCNA —0060

TCNB —0061

TCNC —0062

TCND —0063

TCNE —0064

TCNF —0065

TCNG —0066*

TCNH —0067*

TCOA 0060

INSTRUCTION

5 ug

o 3 So «
3 5 5§ 2

Reset Indicators of Left Half 52
Reset Indicators of Right
Half 52

Reset Indicators from Storage X X 52
Round X 22
Right Half Indicators, On
Test 54

Rotate MQ Left 7 X 32
Reset and Start Channel A... XX 67
Reset and Start Channel B XX 67
Reset and Start Channel C XX 67
Reset and Start Channel D .. X X 67
Reset and Start Channel E XX 67
Reset and Start Channel F ... XX 67
Reset and Start Channel G XX 67
Reset and Start Channel H XX 67
Rewind and Unload X 59
Subtract Magnitude X X 21
Store Channel A X X 67
Store Channel B X X 67
Store Channel C X X 67
Store Channel D X X 67
Store Channel E X X 67
Store Channel F X X 67
Store Channel G X X 67
Store Channel H X X 67
Set Density X 59
Set Indicator of Left Half 51
Set Indicator of Right Half 52
Store Left Half MQ X X 33
Store Logical Word X X 33
Set Sign Minus X 50
Set Sign Plus X 50
Store Address X X 34
Start Channel A X X 67
Start Channel B X X 67
Start Channel C X X 67
Start Channel D X X 67
Start Channel E X X 67
Start Channel F X X 67
Start Channel G X X 67
Start Channel H X X 67
Store Decrement X X 34
Store Indicators X X 51

Store Instruction Location
Counter X X 34

Store X X 33
Store Prefix X X 33
Store MQ X X 33
Store Location and Trap 34
Store Tag X X 34
Store Zero X X 34
Subtract X X 21
Store Index in Address 46
Store Index in Decrement 46
Transfer on DSC A
Not in Operation X X 44

Transfer on DSC B
Not in Operation X X 44

Transfer on DSC C
Not in Operation X X 44

Transfer on DSC D
Not in Operation X X 44

Transfer on DSC E
Not in Operation X X 44

Transfer on DSC F
Not in Operation X X 44

Transfer on DSC G
Not in Operation X X 44

Transfer on DSC H
Not in Operation X X 44

Transfer on DSC A
in Operation X X 43

Alphabetic (Continued)

OPERATION CODE
ALPHA OCTAL INSTRUCTION

3 w 22 w
o o eg 3

TCOB

TCOC

TCOD

TCOE

TCOF

TCOG

TCOH

TEFA

TEFB

TEFC

TEFD

TEFE

TEFF •

TEFG

TEFH -

TIF
TIO
TIX
TLQ
TMI -

TNO
TNX
TNZ
TOV
TPL
TQO

TQP
TRA
TRCA

TRCB

TRCC

TRCD

TRCE

TRCF

TRCG

TRCH

TSX
TTR
TXH
TXI

0061

0062

0063

0064

0065

0066

0067

0030

-0030

0031

-0031

0032

-0032

0033

-0033

0046
0042
2000
0040

—0120
—0140
—2000
—0100

0140
0120
0161

0162
0020
0022

-0022

0024

-0224

0026

-0026

0027

-0027

0074
0021
3000

1000

TXL —3000

TZE
UAM

UFA
UFM

0100

-0304

-0300

-0260

2 1§

Transfer on DSC B
in Operation X X 43

Transfer on DSC C
/in Operation X X 43

Transfer on DSC D
in Operation X X 43

Transfer on DSC E
in Operation X X 43

Transfer on DSC F
in Operation X X 43

Transfer on DSC G
in Operation X X 43

Transfer on DSC H
in Operation X X 43

Transfer on DSC A
End of File X X 44

Transfer on DSC B
End of File X X 44

Transfer on DSC C
End of File X X 44

Transfer on DSC D
End of File X X 44

Transfer on DSC E
End of File X X 44

Transfer on DSC F
End of File X X 44

Transfer on DSC G
End of File X X 44

Transfer on DSC H
End of File X X 44

Transfer if Indicators Off XX 53
Transfer if Indicators On XX 53
Transfer on Index 40
Transfer on Low MQ X X 39
Transfer on Minus X X 38
Transfer on No Overflow X X 38
Transfer on No Index 40
Transfer on No Zero X X 37
Transfer on Overflow X X 38
Transfer on Plus X X 38
Transfer on Quotient
Overflow X X 38

Transfer on MQ Plus X X 38
Transfer X X 36
Transfer on DSC A
Redundancy Check X X 44

Transfer on DSC B
Redundancy Check X X 44

Transfer on DSC C
Redundancy Check X X 44

Transfer on DSC D
Redundancy Check X X 44

Transfer on DSC E
Redundancy Check X X 44

Transfer on DSC F
Redundancy Check X X 44

Transfer on DSC G
Redundancy Check X X 44

Transfer on DSC H
Redundancy Check X X 44

Transfer and Set Index 39
Trap Transfer X X 37
Transfer on Index High 39
Transfer with XR Incre-
mented 39

Transfer on XR Low or
Equal 40

Transfer on Zero XX 37

Unnormalized Add Magni-
tude 4 X X 28

Unnormalized Floating Add 4 X X 27
Unnormalized Floating Mul-

tiply 1 X X 29

148 ibm 7090

Alphabetic (Continued)

OPERATION CODE
ALPHA OCTAL

UFS —0302

USM —0306

VDH 0224

VDP 0225

VLM
WEF
WRS
XCA
XCL

0204
0770
0766
0131

—0130

XEC
ZET

0522
0520

HTR
TRA
TTR
ESNT

0000
0020
0021

—0021

TRCA 0022

TRCB —0022

TRCC 0024

TRCD —0024

TRCE 0026

TRCF —0026

TRCG 0027'

TRCH —0027

TEFA 0030

TEFB —0030

TEFC 0031

TEFD —0031

TEFE 0032

TEFF —0032

TEFG 0033

TEFH —0033

TLQ
IIA
TIO
RIA
OAI

0040
0041
0042

—0042
0043

PAI 0044

TIF
PIA

0046
—0046

IIR 0051

IIL
RFT

—0051
0054

LFT
SIR

—0054
0055

INSTRUCTION

W

& $ si
z z§o

Unnormalized Floating Sub-
tract 4 X X 28

Unnormalized Subtract
Magnitude 4 X X 28

Variable Length Divide or

Halt 2 X 24
Variable Length Divide or

Proceed 2 X 24

Variable Length Multiply 1,2 X 22
Write End of File 8 X 59

Write Select 8 X 58

Exchange AC and MQ 34

Exchange Logical AC and
MQ 34

Execute X X 36
Storage Zero Test X X 43

Numerical Listing

Halt and Transfer X X 36

Transfer X X 36

Trap Transfer X X 37

Enter Storage Null.

and Transfer X X 65

Transfer on DSC A
Redundancy Check X X 44

Transfer on DSC B
Redundancy Check X X 44

Transfer on DSC C
Redundancy Check X X 44

Transfer on DSC D
Redundancy Check X X 44

Transfer on DSC E
Redundancy Check X X 44

Transfer on DSC F
Redundancy Check X X 44

Transfer on DSC G
Redundancy Check X X 44

Transfer on DSC H
Redundancy Check X X 44

Transfer on DSC A
End of File X X 44

Transfer on DSC B
End of File X X 44

Transfer on DSC C
End of File X X 44

Transfer on DSC D
End of File X X 44

Transfer on DSC E
End of File X X 44

Transfer on DSC F
End of File X X 44

Transfer on DSC G
End of File X X 44

Transfer on DSC H
End of File X X 44

Transfer on Low MQ X X 39

Invert Indicators from AC 53

Transfer if Indicators On XX 53

Reset Indicators from AC 52

OR Accumulator to Indica-

tors 51

Place Accumulator in Indica-

tors 50
Transfer if Indicators Off X X 53

Place Indicators in Accumu-
lator 51

Invert Indicators of Right
Half 53

Invert Indicators of Left Half 53

Right Half Indicators, Off

Test 55

Left Half Indicators, Off Test 55
Set Indicator of Right Half 52

Numerical (Continued)

OPERATION CODE
ALPHA OCTAL INSTRUCTION

SIL
RNT

LNT -

RIR

RIL -

TCNA -

TCNB -

TCNC -

TCND -

TCNE -

TCNF -

TCNG -

TCNH -

TCOA

TCOB

TCOC

TCOD

TCOE

TCOF

TCOG

TCOH

TSX
TZE
TNZ -

CVR

-0055
0056

-0056
0057

-0057
-0060

-0061

-0062

-0063

-0064

-0065

-.0066

-0067

0060

0061

0062

0063

0064

0065

0066

0067

0074
0100

-0100
0114

CAQ —0114

TPL
TMI
XCL

XCA

TOV
TNO
CRQ

TQO

TQP
MPY
MPR
VLM
DVH
DVP
VDH

VDP

FDH
FDP
FMP
UFM

0120
—0120
—0130

0131

0140
—0140
—0154

0161

0162
0200

—0200
0204

0220

0221

0224

0225

0240

0241

0260

—0260

Set Indicator of Left Half 51

Right Half Indicators, On
Test 54

Left Half Indicators, On Test 54

Reset Indicators of Right
Half 52

Reset Indicators on Left Half 52
Transfer DSC A
Not in Operation X X 44

Transfer DSC B
Not in Operation X X 44

Transfer DSC C
Not in Operation X X 44

Transfer DSC D
Not in Operation X X 44

Transfer DSC E
Not in Operation X X 44

Transfer DSC F
Not in Operation X X 44

Transfer DSC G
Not in Operation X X 44

Transfer DSC H
Not in Operation X X 44

Transfer DSC A
in Operation X X 43

Transfer DSC B
in Operation X X 43

Transfer DSC C
in Operation X X 43

Transfer DSC D
in Operation X X 43

Transfer DSC E
in Operation X X 43

Transfer DSC F
in Operation X X 43

Transfer DSC G
in Operation X X 43

Transfer DSC H
in Operation X X 43

Transfer and Set Index 39

Transfer on Zero X X 37

Transfer on No Zero X X 37

Convert by Replacement from
AC 6 56

Convert by Addition from
MQ 6 57

Transfer on Plus X X 38
Transfer on Minus X X 38
Exchange Logical Accumula-

tor and MQ 34

Exchange Accumulator and
MQ 34

Transfer on Overflow X X 38

Transfer on No Overflow X X 38
Convert by Replacement from
MQ 6 56

Transfer on Quotient
Overflow X X 38

Transfer on MQ Plus X X 38
Multiply 1 X X 22
Multiply and Round 1 X X 22
Variable Length Multiply 1,2 X 22

Divide or Halt X X 24

Divide or Proceed X X 24

Variable Length Divide or
Halt 2 X 24

Variable Length Divide or
Proceed 2 X 24

Floating Divide or Halt 5 X X 30

Floating Divide or Proceed 5 X X 30

Floating Multiply 1 X X 29

Unnormalized Floating Mul-
tiply 1 X X 28

Appendix 149

Numerical (Continued)

OPERATION CODE
ALPHA OCTAL

FAD
UFA
FSB
UFS

FAM
UAM

FSM
USM

ANS
ANA
ERA
CAS

0300
-0300
0302

-0302

0304
-0304

0306
-0306

0320
-0320
0322
0340

LAS —0340

ACL
ADD
SBM
ADM
SUB
HPR
IIS

LDI
OSI
OFT
RIS
ONT
CLA
CAL
ORA
CLS
ZET
NZT
XEC
LXA
LXD
LAC

0361
0400

—0400
0401

0402
0420
0440

0441

0442
0444
0445
0446
0500

—0500
—0501

0502
0520

—0520
0522
0534

—0534
0535

LDC —0535

RCHA
RCHB
RCHC
RCHD
RCHE
RCHF
RCHG
RCHH
RSCA
RSCB
RSCC
RSCD
RSCE
RSCF
RSCG
RSCH
LCHA
LCHB
LCHC
LCHD
LCHE
LCHF
LCHG
LCHH
STCA
STCB
STCC
STCD
STCE

0540
—0540

0541
—0541

0542
—0542

0543
—0543
+0540
—0540
+0541
—0541
+0542
—0542
+0543
—0543

0544
—0544

0545
—0545

0546
—0546

0547
—0547
+0544
—0544
+0545
—0545
+0546

INSTRUCTION

Floating Add 3 X X 26
Unnormalized Floating Add 4 X X 27
Floating Subtract 3 X X 27
Unnormalized Floating Sub-

tract 4 X X 28
Floating Add Magnitude 3 X X 27
Unnormalized Add Magni-
tude 4 X X 28

Floating Subtract Magnitude 3 X X 28
Unnormalized Subtract Mag-
nitude 4 X X 28

AND to Storage X X 48
AND to Accumulator X X 48
Exclusive OR to Accumulator X X 49
Compare Accumulator with
Storage X X 43

Logical Compare AC with
Stooge X X 43

Add and Carry Logical Word X X 21
Add X X 20
Subtract Magnitude X X 21
Add Magnitude X X 20
Subtract X X 21
Halt and Proceed 35
Invert Indicators
from Storage X X 53

Load Indicators X X 51
OR Storage to Indicators XX 51
Off Test for Indicators XX 54
Reset Indicators from Storage X X 52
On Test for Indicators XX 54
Clear and Add X X 20
Clear and Add Logical Word X X 20
OR to Accumulator X X 48
Clear and Subtract X X 20
Storage Zero Test X X 43
Storage Not-Zero Test XX 43
Execute X X 36
Load Index from Address 45
Load Index from Decrement 45
Load Complement of
Address in XR 45

Load Complement of
Decrement in XR 45

Reset and Load Channel A X X 60
Reset and Load Channel B X X 60
Reset and Load Channel C X X 60
Reset and Load Channel D X X 60
Reset and Load Channel E X X 60
Reset and Load Channel F X X 60
Reset and Load Channel G X X 60
Reset and Load Channel H X X 60
Reset and Start Channel A ... XX 67
Reset and Start Channel B ... XX 67
Reset and Start Channel C ... XX 67
Reset and Start Channel D XX 67
Reset and Start Channel E .. X X 67
Reset and Start Channel F... XX 67
Reset and Start Channel G XX 67
Reset and Start Channel H . XX 67
Load Channel A 8 X X 61
Load Channel B 8 X X 61
Load Channel C 8 X X 61
Load Channel D 8 X X 61
Load Channel E 8 X X 61
Load Channel F 8 X X 61
Load Channel G 8 X X 61
Load Channel H 8 X X 61
Start Channel A X X 67
Start Channel B X X 67
Start Channel C X X 67
Start Channel D X X 67
Start Channel E X X 67

Numerical (Continued)

OPERATION CODE
ALPHA OCTAL

STCF
STCG
STCH
LDQ
ENB
STZ
STQ
STO
SLW
ORS
STI
SLQ
STA
STD
STT
STL

STP
SXA
SXD
SCHA
SCHB
SCHC
SCHD
SCHE
SCHF
SCHG
SCHH
PAX
PDX
PAC

PDC

PXA
PXD
PSE
MSE
CLM
LBT
PBT
CHS
EFTM
SSP
SSM
ENK
LFTM
IOT
ESTM
COM
ECTM
ETM
LTM
RND
LSNM

FRN
DCT
RCT
RDCA
RDCB
RDCC
RDCD
RDCE
RDCF
RDCG
RDCH
RICA
RICB
RICC
RICD
RICE
RICF

—0546
+0547
—0547
0560

0564

0600

—0600
0601

0602

—0602
0604

—0620
0621

0622
0625

—0625

0630
0634

—0634
0640

—0640
0641

—0641
0642

—0642
0643

—0643
0734

—0734
0737

—0737

0754
—0754

0760
—0760

0760.

0760.

.

—0760.
0760.

—0760.
0760.

—0760.
0760.

—0760.
0760.

—0760.
0760.

—0760.
0760.

—7060.
0760.

—0760.

.0000

.0001

.0001

.0002

.0002

.0003

.0003

.0004

.0004

.0005

.0005

.0006

.0006

.0007

.0007

.0010

.0010

0760.

0760.

0760.
0760.

0760.

0760.
0760.

0760.
0760.

0760.
0760.
0760.

0760.

0760.
0760.

0760.

0760.

.0011

.0012

.0014

.1352

.2352

.3352

.4352

.5352

.6352

.7352
10352
.1350

.2350

.3350

.4350

.5350

.6350

INSTRUCTION

Start Channel F X X 67
Start Channel G X X 67
Start Channel H X X 67
Load MQ X X 33
Enable X X 65
Store Zero X X 34
Store MQ X X 33
Store X X 33
Store Logical Word X X 33
OR to Storage X X 48
Store Indicators X X 51
Store Left Half MQ X X 33
Store Address X X 34
Store Decrement X X 34
Store Tag X X 34
Store Instruction Location
Counter X X 34

Store Prefix X X 33
Store Index in Address 46
Store Index in Decrement 46
Store Channel A X X 60
Store Channel B X X 60
Store Channel C X X 60
Store Channel D X X 60
Store Channel E X X 60
Store Channel F X X 60
Store Channel G X X 60
Store Channel H X X 60
Place Address in Index 45
Place Decrement in Index 46
Place Complement of Address

in XR 46
Place Complement of
Decrement in XR 46

Place Index in Address 47
Place Index in Decrement 47
Plus Sense x 40
Minus Sense x 41
Clear Magnitude X 49
Low-Order Bit Test X 42
P-bit Test x 42
Change Sign x 49
Enter Floating Trap Mode X 66
Set Sign Plus X 50
Set Sign Minus X 50
Enter Keys X 35
Leave Floating Trap Mode X 66
Input-Output Check Test X 42
Enter Select Trap Mode X 66
Complement Magnitude X 49
Enter Copy Trap Mode X 66
Enter Trapping Mode X 36
Leave Trapping Mode X 37
Round x 22
Leave Storage Nullification
Mode x 65

Floating Round x 28
Divide Check Test X 42
Restore Channel Traps X 65
Reset Data Channel A X 59
Reset Data Channel B X 59
Reset Data Channel C X 59
Reset Data Channel D X 59
Reset Data Channel E X 59
Reset Data Channel F X 59
Reset Data Channel G X 59
Reset Data Channel H X 59
Reset Channel A X 68
Reset Channel B X 68
Reset Channel C X 68
Reset Channel D X 68
Reset Channel E X 68
Reset Channel F X 68

150 ibm 7090

Numerical (Continued)

OPERATION CODE
ALPHA OCTAL

RICG 0760.. 7350
RICH 0760.10350
NOP 0761

RDS 0762
LLS 0763
LGL —0763
BSR 0764
BSF —0764
LRS 0765
LGR —0765
WRS 0766
ALS 0767
WEF 0770
ARS 0771

REW 0772

INSTRUCTION

Reset Channel G X 68

Reset Channel H X 68

No Operation 35

Read Select 8 X 58

Long Left Shift 7 X 32

Logical Left Shift 7 X 32

Backspace Record 8 X 58

Backspace File 8 X 58

Long Right Shift 7 X 32

Logical Right Shift 7 X 32

Write Select 8 X 58

Accumulator Left Shift 7 X 31

Write End of File 8 X 59

Accumulator Right Shift 7 X 32

Rewind 8 X 59

Numerical (Continued)

OPERATION CODE
ALPHA OCTAL

RUN —0772
RQL —0773
AXT 0774
AXC —0774

SDN
TXI

0776

1000

STR —1000
TIX 2000

TNX —2000
TXH 3000

TXL —3000

INSTRUCTION

Rewind and Unload X
Rotate MQ Left 7 X
Address to Index True
Address to Index
Complemented

Set Density X
Transfer with XR
Incremented

Store Location and Trap
Transfer on Index

Transfer on No Index

Transfer on Index High
Transfer on XR Low

or Equal

59
32
45

46
59

39

34

40

40

39

40

Appendix 151

Appendix G. Instructions by Operation Group

INSTRUCTION pAG£

Fixed Point Operations

Clear and Add 20
Clear and Add Logical Word 20
Clear and Subtract 20
Add 20
Add Magnitude 20
Subtract 21
Subtract Magnitude 21
Add and Carry Logical Word 21
Multiply 22
Multiply and Round 22
Round 22
Variable Length Multiply 22
Divide or Halt 24
Divide or Proceed 24
Variable Length Divide or Halt 24
Variable Length Divide or Proceed 24

Floating Point Operations

Floating Add 26
Floating Add Magnitude 27
Unnormalized Floating Add 27
Floating Subtract 27
Unnormalized Add Magnitude 28
Floating Subtract Magnitude 28
Unnormalized Subtract Magnitude 28
Floating Round 28
Unnormalized Floating Subtract 28
Floating Multiply 29
Unnormalized Floating Multiply 29
Floating Divide or Halt 30
Floating Divide or Proceed 30

Shifting Operations

Accumulator Left Shift 31

Accumulator Right Shift 32
Long Left Shift 32
Long Right Shift 32
Logical Right Shift 32
Rotate MQ Left 32

Word Transmission Operations

Load MQ 33

Store MQ 33

Store Left Half MQ 33

Store 33

Store Logical Word 33

Store Prefix 33

Store Decrement 34

Store Tag 34
Store Address 34

Store Instruction Location Counter 34

Store Location and Trap 34
Store Zero 34
Exchange AC and MQ 34
Exchange Logical AC and MQ 34
Enter Keys 35

INSTRUCTION pAGE

Control Operations

No Operation 35

Halt and Proceed 35

Halt and Transfer 36

Execute 36
Transfer 36
Enter Trapping Mode 36

Leave Trapping Mode 37
Trap Transfer 37
Transfer on Zero 37
Transfer on No Zero 37
Transfer on Plus 38
Transfer on Minus 38
Transfer on Overflow 38
Transfer on No Overflow 38
Transfer on MQ Plus 38
Transfer on MQ Overflow 38
Transfer on Low MQ 39
Transfer and Set Index 39
Transfer with Index Incremented 39
Transfer on Index High 39
Transfer on Index Low or Equal 40
Transfer on Index 40
Transfer on No Index 40
Sense Lights Off (PSE) 40
Sense Lights On (PSE) 40
Sense Switch Test (PSE) 40
Sense Card Punch (PSE) 41
Sense Printer Test (PSE) 41
Sense Printer (PSE) 41
Beginning of Tape Test 41
Sense Light Test (MSE) 4!
End of Tape Test 41
Input-Output Check Test 42
P-Bit Test ^'

42
Low-Order Bit Test 42
Divide Check Test 42
Storage Zero Test 43
Storage not Zero Test 43
Transfer on Channel in Operation 43
Transfer on Channel not in Operation 44
Compare Accumulator with Storage 43
Logical Compare Accumulator with Storage 43
Transfer on Channel Redundancy Check 44
Transfer on Channel End of File 44
Transfer in Channel 44
Transfer when Indicators On 53
Transfer when Indicators Off 53
On Test for Indicators 54
Off Test for Indicators 54
Left Half Indicators On Test 54
Left Half Indicators Off Test 55
Right Half Indicators On Test 54
Right Half Indicators Off Test 55

Index Transmission Operations

Load Index from Address 45
Load Complement of Address in Index 45
Load Index from Decrement 45
Load Complement of Decrement in Index 45

152 ibm 7090

Instructions by Operation Group (Cont'd)

INSTRUCTION PAGE

Address to Index True 45

Address to Index Complemented 45

Place Address in Index 46

Place Complement of Address in Index 46

Place Decrement in Index 46

Place Complement of Decrement in Index 46

Store Index in Address 46

Store Index in Decrement 47

Place Index in Address 47

Place Index in Decrement 47

Logical Operations

OR to Accumulator 48

OR to Storage 48

AND to Accumulator 48

AND to Storage 48

Exclusive OR to Accumulator 48

Complement Magnitude 49

Clear Magnitude 49

Change Sign 49

Set Sign Plus 50
Set Sign Minus 50

Sense Indicator Operations

Place Accumulator in Indicators 50
Place Indicators in Accumulator 51

Load Indicators 51

Store Indicators 51

OR Accumulator to Indicators 51

OR Storage to Indicators 51

Set Indicators of Left Half 51

Set Indicators of Right Half 51

Reset Indicators from Accumulator 52
Rest Indicators from Storage 52
Reset Indicators of Left Half 52
Reset Indicators of Right Half 52
Invert Indicators from Accumulator 52
Invert Indicators from Storage 53
Invert Indicators of Left Half 53
Invert Indicators of Right Half 53

Convert Operations

Convert by Replacement from AC 56
Convert by Replacement from MQ 56
Convert by Addition from the MQ 57

Input-Output Operations

Read Select 58

Write Select 58

Backspace Record 58

Backspace File 59

Write End of File 59

Rewind 59
Rewind and Unload 59
Set Density 59
Reset Data Channel 60

INSTRUCTION pAGE

Input-Output Transmission Operations

Store Channel 60

Reset and Load Channel 60
Load Channel 60

Data Channel Command Operations

I-O under Count Control and Disconnect 61

I-O under Count Control and Proceed 62

I-O of a Record and Proceed 62

I-O under Count Control and Transfer 62

I-O of a Record and Transfer 63

I-O until Signal, then Proceed 63

I-O until Signal, then Transfer 63

Channel Trap Operations

Enable from Y 63

Restore Channel Traps 63

System Compatibility Operations

Enter Storage Null and Transfer 65

Leave Storage Nullification Mode 65

Enter Select Trap Mode 65

Enter Copy Trap Mode 66

Enter Floating Trap Mode 66

Leave Floating Trap Mode 66

7909 Data Channel Instructions

Reset and Start Channel 67

Start Channel 67

Store Channel 67

Enable 67

Reset Channel 68

7909 Data Channel Commands
Control 68

Control and Read 68

Control and Write 68

Sense 69

Copy and Disconnect 70

Copy and Proceed 71

Transfer in Channel 72

Load Assembly Register 72

Store Assembly Register 72

Transmit 72

Load Command Counter 72

Transfer and Decrement Counter 72

Insert Control Counter 73

Transfer on Condition Met 73

Set Mode and Select 73

Wait and Transfer 73

Trap and Wait 74

Leave Interrupt Program 74

Leave Interrupt Program and Transfer 74

Appendix 153

Index
Page

Accumulator Register 8

Accumulator Overflow Indicator 11

Address 7

Data Channel 13

Direct Effective 11

Indirect 11

Input Output Components 80

Modification 9

Argument 55

Assembly Program 109

Backspace Tape 58

Beginning-of-Tape Indicator 14, 92

Binary Point 7

Bit 7

Blank Tape Sections 93

Card Punch 99

Card Reader 96

Channel Address Register 13

Channel Signals 15

Channel Trap Operations 63

Character Alteration in BCD Mode 80

Characteristic 7, 26

Check Sum, Logical 110

Checking and Printing 104

Closed Subroutine 114

Commands, Data Channel 61

Compatibility 81

Complement Arithmetic 10

Components 80

Control Instructions 7, 35

Conversion Table, Octal Decimal Fractions 139

Conversion Table, Octal Decimal Integers 135

Convert Instructions 55, 115

Core Storage 7

Data Channel 89

Address Register 13

Addressing 12

Beginning-of-Tape Indicator 14, 92

Channel Trap 15

Commands 61

Control Indicator Register 14

Data Register 14

End-of-File Indicator 14, 92

End-of-Tape Indicator 14, 92

External Signal 17

In Operation 90

Indefinite Delay 91

Page

Indicators 14

Interrupt 77

Location Register 13

Non-transmitting Mode 61

Operation 12

Operation Register 13

Program Example 64

Programmed Delay 91

Programmed Interruption 93

Programming Techniques 6

Registers 8, 13

Select Instruction Stacking 90

Select Instructions 90

Select Registers 89

Tape Check Indicator 14, 91

Timing 94, 98, 100, 106

Trap 15

Trap Indicator 15

Word Count Register 13

Decimal Octal Fraction Conversion Table 139

Decimal Octal Integer Conversion Table 135

Decrement io

Direct Data Connection 17

Direct Effective Address 11

Disable 15

Disk Storage 80

Echo Checking Printer 104

Effective Address \\

Effective Address Modification n
Enable 15

End-of-File Indicator 92

End-of-File Sensing 14, 92

End-of-Tape

Indicator \4 f 92

Entry Keys 12

External Signal 16

Fixed Point Operations 20

Fixed Point Numbers 7

Flag, Indirect Addressing \\

Floating Point

Arithmetic 25

Overflow and Underflow 30, 122

Operations 25

Numbers 7

Spill 123

Trap 30, 123

Word Format 25

154 ibm 7090

Page

In Operation 90

Indefinite Delays 91

Index Register 9

Arithmetic 11

Transmission Operations 44

Indicators 11

Accumulator Overflow 11, 12

Beginning of Tape 14, 92

Data Channel 14

Divide Check 11

End of File 92

End of Tape 92

Input Output Check 11

Tape Check 91

Transfer Trap Mode 11

Indirect Addressing 11

Indirect Addressing Flag 11

Indirect Effective Address 11

Inhibit 15

Input Output 80

Operations 57

Transmission Operations 60

Units 80

Interrupt, Data Channel 77

Interruption, Programmed 93

Instruction y t g

Counter 9

Register 9

Timing 19

Variable Cycle 19

Location Register 13

Logical Check Sum 100

Logical Operations 47

Magnetic Tape

Blank Tape Sections 93

Check Indicator 91

Timing 94

Units 80

Mask
10, 50

Multiple Tag, Index Registers 10

Multiplier Quotient Register 9

Non-data Select 89

Normal Number 8

Number Systems and Conversion 130

Numerical Listing, Operation Codes 148

Octal Code for Operations 148

Octal Decimal Fraction Conversion Table 139

Page

Octal Decimal Integer Conversion Table 135

Open Subroutine 114

Operand 7

Operation, Data Channel 12

Packing 112

Powers of 2 142

Printer 102

Alternate Type Wheels 103

Disconnect 105

Timing 105, 107

Printing a Line 103

Printing Multiple Lines 104

Printing with Checking 104

Program 7

Program, Assembly 109

Program Compatibility 75

Programmed Delay 91

Program Interruption 93

Real Time 17

Reference Cycle, Storage 7

SCAT Operation Codes Listing 143

Select Instruction Stacking 90

Select Instructions 90

Select Registers 89

Sense Indicator Operations 50

Sense Indicator Register 9

Sense Indicators 120

Sense Lights 12

Sense Switches 11

Shifting Operations 31

Skip 10

Stacking, Data Channel Commands 90

Storage

Core 7

Reference Cycle 7

Register 9

Stored Program 7

Subroutines 114

Symbolic Programming 107

System Compatibility Operations 65

Systems Program Compatibility 75

Table of Powers of 2 142

Tag, Index Registers 9

Tape, Magnetic

Check Indicator 14, 91

Timing 94

Units 80

Index 155

Page

Timing

Card Punch 99

Card Reader 97

Data Channel 94, 98, 100, 106

Instructions 19

Magnetic Tape 94

Printer 105, 107

with Echo Checking 107

without Echo Checking 105

Transfer Instructions 7

Transfer Trap 11

Transfer Trapping Mode 11

Trap

Control Indicator 11

Data Channel 11

Page

True Number 10

Twos Complement 11

Type Wheel Characters 90

Unnormal Number 8

Unpacking 112

Word Count Register 13

Word Transmission Operations 33

Words 7

Write Binary, Printer 107

Writing a Format Track 126

156 ibm 7090

A22-6528-4

ih

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains New York

